## **ElecKits UHF RFID Reader Module**

# AS3992 Protocol

Support Uart and USB version

ElecKits Technologies, Inc. http://rfid.eleckits.com

1

After connecting the USB version reader to the computer it is automatically installed as a HID (Human Interface Device). The HID protocol defines different reports. Every report has its own report ID, length and a definition if it is an IN- or OUT-report. A report starts with a report ID.

## 1. Command-Frame

As mentioned before a frame starts with the report ID. The report ID is also called command in this documentation. The second byte is the length of the frame (the ID and the length bytes are included in the length).

| Byte 1    | Byte 2       | Variable length |
|-----------|--------------|-----------------|
| Report ID | Frame Length | Payload         |
|           |              |                 |

Table 1: Command frame

## 2. Error Byte

Some commands from the controller to the host include an error byte:

| 0x00      | No Error                                           |  |
|-----------|----------------------------------------------------|--|
| 0x80-0xFF | Look at the EPC Specification for more information |  |
| OxFF      | No response from the Tag (time out)                |  |

Table 2: Error Byte

If the tag does not respond, the cause might be that the tag is no longer in the field or a communication error. For more information please refer to the EPC specification [EPC 2005] or Annex A below.

| Error-Code<br>Support | Error Code | Error-Code<br>Name                              | No reply error from Tag                                                                                      |  |
|-----------------------|------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|
|                       | 1000 0000  | Other error                                     | Catch-all for errors not covered by other codes                                                              |  |
| Error-specific        | 1000 0011  | Memory<br>overrun or<br>unsupported<br>PC value | The specified memory location does not<br>exist or the PC value is not supported by<br>the tag               |  |
|                       | 1000 0100  | Memory locked                                   | The specified memory location is locked<br>and/or perm locked and is either not<br>writeable or not readable |  |
|                       | 1000 1011  | Insufficient<br>power                           | The tag has insufficient power to perform the memory-write operation                                         |  |

| Non-specific | 1000 1111 Non-specific<br>error |                            | The tag does not support error-specific codes |  |
|--------------|---------------------------------|----------------------------|-----------------------------------------------|--|
| no Reply     | 1111 1111                       | No reply error<br>from Tag | The Tag has not replied to the reader command |  |

Table 3: Annex A Error Codes

## 3. Memory Bank

Some commands contain the tag's memory bank:

| Memory Bank | Value | Implementation state for Firmware |
|-------------|-------|-----------------------------------|
| MEM_RES     | 0x00  | Implemented since 0.0.6           |
| MEM_EPC     | 0x01  | Implemented                       |
| MEM_TID     | 0x02  | Implemented since 0.0.6           |
| MEM_USER    | 0x03  | Implemented since 0.0.6           |

Table 4: Memory Bank

## 4. Reports(Commands)

Only the following reports are implemented. There are enough other values for additional new reports (value 0 is reserved and the maximum value is 0xFF). OUT stands for a report from the host to the controller and IN means a report from the controller to the host.

| Report            | value | Report                  | value |
|-------------------|-------|-------------------------|-------|
| OUT_FIRM_HARDW_ID | 0x10  | OUT_KILL_TAG            | 0x3D  |
| IN_FIRM_HARDW_ID  | 0x11  | IN_KILL_TAG             | 0x3E  |
| OUT_DEVICE_INFO   | 0x12  | OUT_INVENTORY_6B_ID     | 0x3F  |
| IN_DEVICE_INFO    | 0x13  | IN_INVENTORY_6B_ID      | 0x40  |
| OUT_CPU_RESET     | 0x16  | OUT_CHANGE_FREQ         | 0x41  |
| OUT_ANTENNA_POWER | 0x18  | IN_CHANGE_FREQ          | 0x42  |
| OUT_WRITE_REG     | 0x1A  | OUT_INVENTORY_RSSI      | 0x43  |
| IN_WRITE_REG      | 0x1B  | IN_INVENTORY_RSSI       | 0x44  |
| OUT_READ_REG      | 0x1C  | OUT_NXP_COMMAND         | 0x45  |
| IN_READ_REG       | 0x1D  | IN_NXP_COMMAND          | 0x46  |
| OUT_INVENTORY     | 0x31  | OUT_WRITE_TO_TAG_6B_ID  | 0x47  |
| IN_INVENTORY      | 0x32  | IN_WRITE_TO_TAG_6B_ID   | 0x48  |
| OUT_SELECT_TAG    | 0x33  | OUT_READ_FROM_TAG_6B_ID | 0x49  |
| IN_SELECT_TAG     | 0x34  | IN_READ_FROM_TAG_6B_ID  | 0x50  |
| OUT_WRITE_TO_TAG  | 0x35  | OUT_FIRM_PROGRAM_ID     | 0x55  |
| IN_WRITE_TO_TAG   | 0x36  | IN_FIRM_PROGRAM_ID      | 0x56  |
| OUT_READ_FROM_TAG | 0x37  | OUT_REGS_COMPLETE_ID    | 0x57  |

3

| IN_READ_FROM_TAG | 0x38 | IN_REGS_COMPLETE_ID  | 0x58 |
|------------------|------|----------------------|------|
| OUT_LOCK_UNLOCK  | 0x3B | OUT_GEN2_SETTINGS_ID | 0x59 |
| IN_LOCK_UNLOCK   | 0x3C | IN_GEN2_SETTINGS_ID  | 0x5a |

Table 5: Report List

It is advised to send the reports always with the maximal report length of 64 bytes. Most reports are already defined in the descriptor with the maximal length. The others may change in future. Windows truncates longer reports and discards shorter reports!

## 5. Reader-Oriented Commands

This command does not start a communication with the tags. They are usable for configuring the microcontroller and/or the AS399X and for getting (some) information.

Serial communication port (UART) configuration (initialization):

| Parameter | Configuration                                                      |  |
|-----------|--------------------------------------------------------------------|--|
| Port      | COMx (this is serial communication port connecting to RFID reader) |  |
| Baud Rate | 115200                                                             |  |
| Check bit | NONE                                                               |  |
| Data bits | 8                                                                  |  |
| Stop bits | 1                                                                  |  |

Table 6: Initialization

Power-on reset or click reset switch S1, the serial port debugging tool show (see Figure 1):

Hello 20110324 World

INTVCO\_lwm

Lwm\_as399xInitialize () returned 0000

|         | 🕂 ElecKits UHF RFID Debug Tools with Uart Version 📃 🗆 🔀                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Port :       COM4       Image: StaTUS:COM Port Closed SetDtrRts:+12V         Baud :       115200       Image: StaTUS:COM Port Closed SetDtrRts:+12V         DataBits:       8       Image: StaTUS:COM Port Closed SetDtrRts:+12V         DataBits:       8       Image: StaTUS:COM Port Closed SetDtrRts:+12V         DataBits:       8       Image: StaTUS:COM Port Closed SetDtrRts:+12V         Parity:       NONE       Image: StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS:StaTUS: |
|         | ShowHex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         | ReceiveClr WriteMemUsr Read_MEM_USF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| iqure 1 | HardWare     WriteTag       SoftWare     SelectTag       SoftWare     SelectTag       ScAN     SetEPC       SetPassword     LockTag       SetPassword     LockTag         RFID.eleckits.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

## 5.1 Command Send Firm-/Hardware ID

This command is used to read out the reader's firmware and hardware ID. The command sent from the host to the microcontroller looks the following way:

| Byte 0/ID | Byte 1       | Byte 2         |
|-----------|--------------|----------------|
| 0x10      | FRAME Length | Firm-/Hardware |

Table 7: Command frame: Send Firm-/Hardware ID from host.

With byte 3 the host can select the ID which the microcontroller shall return:

| value | ID       |
|-------|----------|
| 0x00  | Firmware |
| 0x01  | Hardware |

Table 8: Firmware-/Hardware ID byte (Byte 2).

The command sent to the host has the following form:

| Byte 0/ID | Byte 1       | Variable length but maximum 64 bytes |
|-----------|--------------|--------------------------------------|
| 0x11      | Frame Length | string                               |

Table 9: Command frame: Send Firm-/Hardware ID from microcontroller.

Ec. Software version indentify command

Send: 10 03 00

 Receive: 11 23 41 53 33 39 31 20 4D 69 6E 69 20 52 65 61 64 65 72 20 46 69 72

 6D 77 61 72 65 20 31 2E 35 2E 31

 (select the Show Hex)

 Or receive: 0x11\_AS3991 Mini Reader Firmware 1.5.1
 (not select the Show Hex)

 Hex)

To achieve through the software key on the serial port debugging tool.

Hardware version indentify command Send: 10 03 01 Receive: 11 22 41 53 33 39 39 31 20 52 4F 47 45 52 20 52 65 61 64 65 72 20 48 61 72 64 77 61 72 65 20 31 2E 32

Or receive: 0x11\_AS3991 ROGER Reader Hardware 1.2

To achieve through the hardware key on the serial port debugging tool.

| Port : CON3 💌        | STATUS:CON Port Closed<br>SetDtrRts:+12V<br>115000 = 8 1 Card Opened                                                                                                                                                                                                                                                                                                                                                                          | ~ |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Baud : 115200 -      | ##AS3991         Mini Reader Firmware         1.5.1           11         23         41         53         33         39         31         20         4D         69         6E         69         20         52         65         61         64         65         72         20         46         69         72         6D           77         61         72         65         20         31         2E         35         2E         31 |   |
| Parity : NONE -      |                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| FlowCtl: SetDtrRts - |                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| Por t0pened          |                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| V ShowHex            |                                                                                                                                                                                                                                                                                                                                                                                                                                               | M |
| ReceiveClr           |                                                                                                                                                                                                                                                                                                                                                                                                                                               | _ |

## Figure 2.

To the software key, the codes are as follows:

```
void CGpsDlg::OnButtonSoftware()
{
    // TODO: Add your control notification handler code here
    BYTE buf[] = {0x10,0x03,0x00};
    CByteArray hexdata;
    this->m_Function.ByteToByteArray(buf,sizeof(buf),hexdata);
    this->m_CommCtrl.SetOutput(COleVariant(hexdata));
}
```

To the hardware key, the codes are as follows:

```
void CGpsDlg::OnButtonHardware()
{
    char Send_str[]={0X10,0X03,0X01};
        CByteArray hexdata; //buffer how to into cbytearray
this->m_Function.ByteToByteArray((BYTE*)Send_str,sizeof(Send_str),hexdata);
    this->m_CommCtrl.SetOutput(COleVariant(hexdata));
}
```

## 5.2 Command Antenna Power

To change the antenna power uses this command.

Command from host:

| Byte 0/ID | Byte 1       | Byte 2        |
|-----------|--------------|---------------|
| 0x18      | Frame length | Antenna power |

Table 10: Command frame: Antenna Power from host

With byte 3 the host can select the antenna output power:

| Value       | Antenna Power                                          |
|-------------|--------------------------------------------------------|
| 0x00        | Power OFF                                              |
| 0x01 - 0xFE | Reserved to change the output level in later versions. |
| 0xFF        | Power ON                                               |
|             |                                                        |

Table 11: Antenna Power Byte

Response from microcontroller:

| 0v10 Frame length   |     |
|---------------------|-----|
| OX19 Frame length F | Rfu |

Table 12: Command frame: Write Register from controller

Byte 2 is reserved for further use.

**Ec.** Send: 18 03 00

Receive: 19 03 00

Now the microcontroller can not communicate with the tags.

This command acts as a switch of antenna control.

## 5.3 Command Write Register

The write register command can be used to directly manipulate the AS399X

registers.

Command from host:

| Byte 0/ID | Byte 1 | Byte 2           | Byte 3 (Byte 4 & 5 optional) |
|-----------|--------|------------------|------------------------------|
| 0x1A      | Frame  | Register Address | Data                         |
|           | length |                  |                              |

Table 13: Command frame: Write register from host.

If data is longer than one byte the data is written into one of the 3 bytes deep register.

Response from microcontroller:

| Byte 0/ID | Byte 1       | Byte 2     |
|-----------|--------------|------------|
| 0x1B      | Frame length | Error byte |

Table 14: Command frame: Write Register from controller

The controller sends back an error byte if anything goes wrong.

## **Ec.** Send: 1A 04 08 00

Receive: 1B 03 00

No error

RX Wait Time (08)

| Bit | Signal Name | Function                                                                                            | Comments                                       |
|-----|-------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------|
| B7  | Rxw7        |                                                                                                     | Defines the time during which the RX input is  |
| B6  | Rxw6        | Function<br>RX wait time                                                                            | ignored. It starts from the end of TX.         |
| B5  | Rxw5        |                                                                                                     | RX wait range is 6.4us to 1632us (1.,255).     |
| B4  | Rxw4        | RX wait time<br>Step size 6.4µs,<br>00: receiver enabled immediately after TX.<br>ISO 1800.6C(Gen2) | Step size 6.4µs,                               |
| B3  | Rxw3        |                                                                                                     | 00: receiver enabled immediately after TX.     |
| B2  | Rxw2        |                                                                                                     | ISO 1800-6C(Gen2)<br>Gen2: T1min=11.28us262us. |
| B1  | Rxw1        |                                                                                                     | ISO 1800 - 6A: 1501150µs                       |
| B0  | Rxw0        |                                                                                                     | ISO 1800 - 6B: 85460µs                         |

1. Defines the time after TX when the RX input is disregarded.

#### Notes:

- 1. Preset at por=H or EN=L and at each write to 'Protocol control' register
- 2. Gen2: 07(44.8µs < 54.25µs...84.5µs LF:160kHz)

## 5.4 Command Read Register

To read directly an AS399X register, use this command.

Command from host:

| Byte 0/ID | Byte 1       | Byte 2           |
|-----------|--------------|------------------|
| 0x1C      | Frame length | Register Address |

Table 15: Command frame: Read register from host.

If one of the 3 bytes deep registers is selected the controller sends back 3 bytes data.

Response from microcontroller:

| Byte 0/ID | Byte 1       | Byte 2 (Byte 3 & 4 optional) |
|-----------|--------------|------------------------------|
| 0x1D      | Frame length | Data                         |

Table 16: Command frame: Read register from microcontroller.

## Ec. Read the RX Wait Time register,

| Send: 1C 03 08    | Receive: 1D 06 00 00 00 00 |
|-------------------|----------------------------|
| Write to it,      |                            |
| Send: 1A 04 08 07 | Receive: 1B 03 00          |
| Read again,       |                            |
| Send: 1C 03 08    | Receive: 1D 06 07 00 00 00 |

## 5.5 Command Change Frequency

To change the frequency of the reader and to get the reflected power or the RSSI value of the channel, use this command.

Command from host:

| Byte 0/ID | Byte 1 | Byte 2 | Byte 3                           | Byte 4 | yte 4 Byte 5 |       |
|-----------|--------|--------|----------------------------------|--------|--------------|-------|
| 0x41      | Frame  | MASK   | MASK Freq low freq mid freq high |        | RSSI         |       |
|           | length |        | Byte                             | Byte   | Byte         | level |

Table 17: Command frame: Read register from host.

With the mask byte, it is possible to select either the RSSI value that is scanned with no carrier (LBT) or the reflected power that is received with activated carrier.

Mask 0x00: No specific value; - measurement skipped no valid dates in response Mask 0x01: RSSI scan

Mask 0x02: reflected power scan

Mask 0x04: turn hop mode on; - add the frequency to the List

Mask 0x08: turn hop mode off clear the List

Mask 0x10: set LBT parameters

| Byte<br>0/ID | Byte 1 | Byte 2 | Byte 3    | Byte 4    | Byte 5 | Byte 6 | Byte 7 | Byte 8 |
|--------------|--------|--------|-----------|-----------|--------|--------|--------|--------|
| 0x41         | Frame  | 0x10   | listening | listening | max    | max    | idle   | idle   |

| length | Time | Time | SendingTime | SendingTime | Time | Time |
|--------|------|------|-------------|-------------|------|------|
|        | low  | high | low         | high        | low  | high |

Table 18: Command frame.

The frequency is transmitted in kHz: that means 868000 means 868 MHz. With the RSSI value in dBm you can define the LBT border which is used in the hop mode.

Response from microcontroller:

| Byte 0/ID | Byte 1       | Byte 2 | Byte 3 |
|-----------|--------------|--------|--------|
| 0x42      | Frame Length | Data X | Data Y |

Table 19: Command frame: Get data after set frequency

You can change the frequency of the reader using this command. The frequency profiles for different countries are shown in the following table:

| Profile | Start freq | End freq | Increme | RSSI     | Listen | Idle | Max.       |
|---------|------------|----------|---------|----------|--------|------|------------|
|         | [khz]      | [khz]    | nt      | Threshol | Time   | Time | Allocation |
|         |            |          | [khz]   | d        | [ms]   | [ms] | [ms]       |
|         |            |          |         | [dBm]    |        |      |            |
| Europ   | 865,700    | 867,500  | 600     | -40      | 1      | 0    | 10000      |
| е       | 0x0d35a4   | 0x0d3cac | 0x0258  | 0xd8     |        |      |            |
| Japan   | 952,400    | 952,600  | 200     | -87      | 10     | 100  | 4000       |
| USA     | 902,750    | 927,250  | 500     | -40      | 1      | 0    | 400        |
|         | 0x0dc65e   | 0x0e2612 | 0x01f4  | 0xd8     |        |      |            |
| China   | 920,625    | 924,375  | 750     | -40      | 1      | 0    | 10000      |
| 920.62  |            |          |         |          |        |      |            |
| 5       |            |          | 1       |          |        |      |            |
| China   | 840,125    | 844,875  | 250     | -40      | 1      | 0    | 10000      |
| 840.12  |            |          |         |          |        |      |            |
| 5       |            |          |         |          |        |      |            |
| Korea   | 917,300    | 920,300  | 600     | -40      | 1      | 0    | 10000      |

Table 20: Frequency Profiles

## Specific European frequency:

| 865700 khz | 866300 khz | 866900 khz | 867500 khz |
|------------|------------|------------|------------|
| 0x0d35a4   | 0x0d37fc   | 0x0d3a54   | 0x0d3cac   |

The existing frequency profiles are defined in a CSV (Comma Separated Values) file within the installation directory (e.g. C:\Program Files\AS399x Reader Suite). The "profiles.csv" file can be modified if the user may want to add a new frequency profile by adding a new line.

The syntax for adding a new profile is defined as follows:

# Name,StartFreq,StopFreq,Increment,dBm,listenTime,IdleTime,maxAllocationTi me

For example the European frequency profile is defined as:

## Europe,865.7,867.5,0.6,-40,1,0,10000

Besides changing the frequency profile the user may change each frequency related parameter individually.

## **Ec.** Send: 41 08 08 AC 3C 0D D8 01

| Value          | Meaning                                       |  |  |  |  |  |
|----------------|-----------------------------------------------|--|--|--|--|--|
| 0x41           | Command Frequency change ID                   |  |  |  |  |  |
| 0x08           | Frame Length                                  |  |  |  |  |  |
| 0x08           | Turn hop mode off clear the List              |  |  |  |  |  |
| 0xAC 0x3C 0x0D | The frequency of the reader you want,867.5Mhz |  |  |  |  |  |
| 0xD8           | RSSI Threshold,-40 dBm                        |  |  |  |  |  |
| 0x01           | Profile No.                                   |  |  |  |  |  |

**Notes:** After this command is sent, the reader will work at the frequency you set. The reader does not work in the hop mode, it works at a fixed frequency.

Send: 41 08 04 54 3A 0D D8 01

| Value          | Meaning                                            |  |  |  |  |
|----------------|----------------------------------------------------|--|--|--|--|
| 0x41           | Command Frequency change ID                        |  |  |  |  |
| 0x08           | Frame Length                                       |  |  |  |  |
| 0x04           | turn hop mode on; - add the frequency to the List  |  |  |  |  |
|                | The frequency of the reader you want to add to the |  |  |  |  |
| 0X54 0X3A 0X0D | list,866.9Mhz                                      |  |  |  |  |
| 0xD8           | RSSI Level,-40 dBm                                 |  |  |  |  |
| 0x01           | Profile                                            |  |  |  |  |
| 0x42           | Answering sends 0x41                               |  |  |  |  |
| OxFE           | Answering sends 0x08, hop mode off                 |  |  |  |  |
| OXFC           | Answering sends 0x04, hop mode on                  |  |  |  |  |

**Notes:** After this command is sent, the reader will work in the hop mode, it works at the frequency that hops between 867.5Mhz and 866.9Mhz. You can

continue to add new frequency to the list accordingly.

Use the serial port debugging tool:

Click ReadSetting button, check box ShowHex, pop AdvanceReaderSettings dialog box, select Europe in the profile list box, click the OK button, see below:



#### Figure 3.

## Codes are as follows:

```
void CGpsDlg::OnButtonReadsettings()
{
    // TODO: Add your control notification handler code here
    if(this->m_ReadSettingsDlg.DoModal()==IDOK)
    {
        //UINT freqs[50];//usa frequency numbers
        UINT start,end,increment,freq;
        // unsigned char mode =8;
        m_mode = 8;
        start = this->m_ReadSettingsDlg.m_StartFreq;//KHZ
        end = this->m_ReadSettingsDlg.m_EndFreq;
        increment = this->m_ReadSettingsDlg.m_Increment;
        this->m_freqs_size = 0;
        for ( freq = start; freq <= end; freq += increment)</pre>
```

#### {

```
m_freqs[m_freqs_size++] = freq;
        }
        this->SetTimer(1,1000,NULL);//start time1
   }//
}
void CGpsDlg::OnTimer(UINT nIDEvent)
ł
   // TODO: Add your message handler code here and/or call default
   if(1==nIDEvent)
     {
        unsigned char rssi =this->m ReadSettingsDlg.m RssiThreshold;
         unsigned char profile = this->m ReadSettingsDlg.m profile;
             //for(int i=0;i<size;i++)//
             //{
        static int size = 0;
        if(size < this->m freqs size)
        ł
             this->setFrequency(m freqs[size],this->m mode,rssi,profile);
             this->m mode = 4;
             size++;
        }
        else
        {
             size =0;
             //shold kill the timer
             KillTimer(1);
```

}

void CGpsDlg::setFrequency( UINT frequencyKHz, unsigned char mode, unsigned char rssi, unsigned char profile)

{

```
BYTE buf[64];//QByteArray buf;
```

```
// buf.resize(64);
```

```
buf[0] = OUT_CHANGE_FREQ;//0x41
```

buf[1] = sizeof(buf);//7;

buf[2] = mode;

- buf[3] = frequencyKHz & 0x00000FF;
- buf[4] = (frequencyKHz & 0x0000FF00) >> 8;
- buf[5] = (frequencyKHz & 0x00FF0000) >> 16;
- buf[6] = rssi;

```
buf[7] = profile;
```

CByteArray hexdata;

this->m\_Function.ByteToByteArray(buf,sizeof(buf),hexdata); this->m\_CommCtrl.SetOutput(COleVariant(hexdata));

}

## The serial port debugging tool receives:

| Port : CON4 -        | 4"AS3991 ROGER Reader Hardware 1.2<br>4#AS3991 Mini Reader Firmware 1.5.1                                                              |   |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------|---|
| Baud : 115200 -      | DTr .? 2004 24<br>44 16 01 FF 22 D0 0D 0E 30 00 30 34 00 00 00 03 C0 00 00 3F 17<br>42 40 FE FF 0D 00 00 00 00 00 00 00 00 00 00 00 00 |   |
| DataBits: 8          |                                                                                                                                        |   |
| StopBits: 1          |                                                                                                                                        |   |
| FlowCtl: SetDtrRts - | 42 40 FC FF 00 00 00 00 00 00 00 00 00 00 00 00                                                                                        |   |
| Rendomental          |                                                                                                                                        |   |
| - Tor topened        | 00 00 00 00 00 00 00 00 00 00 00 00 00                                                                                                 | - |
| ReceiveClr           | ,                                                                                                                                      |   |

#### Figure 4.

There are a total of 4 responses to the European frequency corresponding to its four frequencies. There are a total of 50 responses to the USA frequency and so on.

## 5.6 Set GEN2 Parameters

#### To access GEN2 specific parameters use this report:

#### Command from host:

| Byte 0/ID      | Byte 1  | Byte 2        | Byte 3        | Byte 4        | Byte 5  |
|----------------|---------|---------------|---------------|---------------|---------|
| Frame linkfree |         | linkfrequency | linkfroquonov | miller        | miller  |
| 0x39           | length  | set           | minimequency  | set           | setting |
| Byte 6         | Byte 7  | Byte 8        | Byte 9        | Byte 10       | Byte 11 |
| session set    | session | trext set     | trext         | qbegin<br>set | qbegin  |

Table 21: Command frame:

The "set" bytes define if the subsequent byte should be set in the reader firmware. The answer to this command returns all the actually set values. This allows reading out the values without actually changing anything.

The parameters are:

• miller: 0=FM0, 2=Miller2, 2=Miller4, 3=Miller8

• **session:** 0=S0, 1= S1, 2=S2, 3=S3, 4=S4

• trext: 1 use long pilot tone, 0: don't use

• **qbegin:** Start value for q when doing inventory rounds. The first round will have 2<sup>q</sup> slots

The controller sends back following frame:

| Byte<br>0/ID | Byte 1          | Byte 2 | Byte 3        | Byte 4  | Byte 5            |
|--------------|-----------------|--------|---------------|---------|-------------------|
| 0x5A         | Frame<br>length | 0      | linkfrequency | 0       | miller<br>setting |
| Byte 6       | Byte 7          | Byte 8 | Byte 9        | Byte 10 | Byte 11           |
| 0            | session         | 0      | trext         | 0       | qbegin            |

Table 22: Command frame: Lock Tag Memory from controller

## 5.7 Register Bulk

Gets the complete register list in one big bulk.

Command from host:

Byte 0/ID Byte 1

| 0x57 | Frame length |
|------|--------------|
|      |              |

Table 23: Command frame:

Response from device:

| Byte<br>0/ID | Byte 1          | Byte 2        | <br>Byte 21        | Byte 22            | Byte 23          | <br>Byte<br>42   |
|--------------|-----------------|---------------|--------------------|--------------------|------------------|------------------|
| 0x58         | Frame<br>length | register<br>0 | register<br>0x12-1 | register<br>0x12-2 | register<br>0x13 | register<br>0x1e |

Table 24: Complete Register List (Bulk)

**Ec.** Send: 57 02

Receive: 58 2D 02 06 F0 62 35 05 00 07 07 01 08 02 00 37 0B 10 98 02 0C 40 00 38 83 84 0A 06 3F 20 06 41 E4 46 18 01 00 87 00 00 00 00 00 00 00

It gets the value in each register of AS388X.

## 6. Transponder Oriented Commands

Transponder oriented commands are commands which force the microcontroller to communicate with the tags. Therefore the antenna power output must be enabled and there must be at least one tag in the field.

## 6.1 Command Inventory

To start an inventory round to find new tags use this command. To get tag information of all found tags also use this command with the next tag information flag set.

Command from host:

| Byte 0/ID | Byte 1       | Byte 2                                 |
|-----------|--------------|----------------------------------------|
| 0x31      | Frame Length | Start inventory / Next tag information |

Table 25: Command frame: Inventory from host

With byte 2 the host can select whether it wants to start a new round or if it wants to get information about the next tag in the microcontroller list.

| Value | Start/Next                                                     |
|-------|----------------------------------------------------------------|
| 0x01  | Start inventory round                                          |
| 0x02  | Next Tag information (should not be sent anymore since v1.3.0) |

Table 26: Start/Next byte (Byte 2).

Response from microcontroller:

| Byte | Byte 1 | Byte 2     | Byte 3    | Byte 4-Byte xx | Byte     |
|------|--------|------------|-----------|----------------|----------|
| 0/ID |        |            |           |                | xx+1Byte |
|      |        |            |           |                | 63       |
| 0x32 | Frame  | Number of  | Length of | EPC 1x         | rfu      |
|      | length | found tags | EPC byte  |                |          |

Table 27: Command frame: Inventory from microcontroller on Firmware.

With byte 2 the controller reports how many tags are found by the inventory command. After sending the first inventory with the next flag set, the controller sends back only the count of the leftover tags. This is used to inform the host how often he has to call the inventory command with the next flag set until he has the tag information of all found tags. But the tag information is still in the microcontroller's tag list. No tag information is deleted. The complete report length is 64 bytes and needs to be taken into account in the Host Software.

## Ec. Send: 31 03 01

Receive: 32 12 01 0E 30 00 01 02 03 04 05 06 07 08 09 10 6A 0F

| Value          | Meaning                                  |  |  |
|----------------|------------------------------------------|--|--|
| 0x32           | Answering sends 0x31                     |  |  |
| 0x12           | Frame length,0x12=18                     |  |  |
| 0x01           | Representatives one label                |  |  |
| 0x0E           | Length of EPC byte                       |  |  |
| 0X30 0X00      | Reserved                                 |  |  |
| 0x01 0x02 0x03 |                                          |  |  |
| 0x04 0x05 0x06 | RFID tag ID. Different tag has different |  |  |
| 0x07 0x08 0x09 | value.                                   |  |  |
| 0x10 0x6A 0x0F |                                          |  |  |

## 6.2 Command Inventory with RSSI

To start an inventory round to find new tags use this command. This command must be executed first. Reading or writing to the tag will not work without this command executed first. To get tag information of all found tags also use this command with the next tag information flag set.

Command from host:

| Byte 0/ID | Byte 1       | Byte 2                                 |
|-----------|--------------|----------------------------------------|
| 0x43      | Frame Length | Start inventory / Next tag information |

Table 28: Command frame: Inventory from host

With byte 3 the host can select whether it wants to start a new round or if it wants to get information about the next tag in the microcontroller list.

| value | Start/next            |
|-------|-----------------------|
| 0x01  | Start inventory round |
| 0x02  | Next tag information  |

Table 29: Start/Next byte (Byte 2).

Response from microcontroller:

| Byte<br>0/ID | Byte 1          | Byte 2                     | Byte<br>3 | Byte 4                | Byte 5-Byte<br>xx | Byte<br>xx+1Byte<br>63 |
|--------------|-----------------|----------------------------|-----------|-----------------------|-------------------|------------------------|
| 0x44         | Frame<br>length | Number<br>of found<br>tags | RSSI      | Length of<br>EPC byte | EPC 1x            | rfu                    |

Table 30: Command frame: Inventory from microcontroller.

With byte 2 the controller reports how many tags are found by the inventory command. After sending the first inventory with the next flag set, the controller sends back only the count of the leftover tags. This is used to inform the host how often he has to call the inventory command with the next flag set until he has the tag information of all found tags. But the tag information is still in the microcontroller's tag list. No tag information is deleted. The complete report length is 64 bytes and needs to be taken into account in the Host Software.

## Ec. Send: 43 03 01

Receive: 44 16 01 9E AC 3C 0D 0E 30 00 01 02 03 04 05 06 07 08 09 10 6A 0F

| Value     | Meaning                                                   |  |  |  |
|-----------|-----------------------------------------------------------|--|--|--|
| 0x44      | Answering sends 0x43                                      |  |  |  |
| 0x16      | FRAME length                                              |  |  |  |
| 0x01      | Representatives one label                                 |  |  |  |
|           | Means Q value, I value;                                   |  |  |  |
| 0x9E      | Signal strength of signal Q =(0x9E>>4)*2=18               |  |  |  |
|           | Signal strength of signal I =(0x9E&0x0F)*2=28             |  |  |  |
| 0xAC      | Frequency 866900kz, can be obtained by calculation 0D<<16 |  |  |  |
| 0x3C      | 3C<<8   AC =                                              |  |  |  |
| 0x0D      | 0x0D3CAC=867500kz=867.5M=865.7+0.6+0.6+0.6M;              |  |  |  |
|           | This is European standard frequency;                      |  |  |  |
|           | For example, the European frequency profile is define as: |  |  |  |
|           | Europe,865.7,867.5,0.6,-40,1,0,10000                      |  |  |  |
| 0x0E      | Length of EPC byte                                        |  |  |  |
| 0x30 0x00 | Reserved                                                  |  |  |  |
| 0x01 0x02 |                                                           |  |  |  |

| 0x03 0x04 | RFID tag ID.                       |
|-----------|------------------------------------|
| 0x05 0x06 | Different tag has different value. |
| 0x07 0x08 |                                    |
| 0x09 0x10 |                                    |
| 0x6A 0x0F |                                    |

Click the SCAN button on the serial port debugging tool, see below:

| - rfid_uart                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Port : CON3<br>Baud : 115200<br>DataBits: 8<br>Parity : NONE<br>StopBits: 1<br>FlowCtl: SetDtrRts | STATUS::COM Port Closed<br>SetDtrRts:+12V<br>115200,n,8,1 Con3 Opened<br>44 16 01 9E AC 3C 0D 0E 30 00 01 02 03 04 05 06 07 08 09 10 6A 0F<br>44 16 01 8E 54 3A 0D 0E 30 00 01 02 03 04 05 06 07 08 09 10 6A 0F<br>44 16 01 9E 54 3A 0D 0E 30 00 01 02 03 04 05 06 07 08 09 10 6A 0F<br>44 16 01 9E 54 3A 0D 0E 30 00 01 02 03 04 05 06 07 08 09 10 6A 0F<br>44 16 01 9E 54 3A 0D 0E 30 00 01 02 03 04 05 06 07 08 09 10 6A 0F<br>44 16 01 9E 54 3A 0D 0E 30 00 01 02 03 04 05 06 07 08 09 10 6A 0F<br>44 16 01 9E 54 3A 0D 0E 30 00 01 02 03 04 05 06 07 08 09 10 6A 0F<br>44 16 01 9E 54 3A 0D 0E 30 00 01 02 03 04 05 06 07 08 09 10 6A 0F<br>44 16 01 9E 54 3A 0D 0E 30 00 01 02 03 04 05 06 07 08 09 10 6A 0F |   |
| V ShowHex                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ~ |

## Figure 5.

## Codes are as follows:

```
void CGpsDlg::OnButtonScan()
{
    // TODO: Add your control notification handler code here
    BYTE buf[] = {0X43,0X04,0X01,0Xcd};
    CByteArray hexdata;
    this->m_Function.ByteToByteArray(buf,sizeof(buf),hexdata);
    this->m_CommCtrl.SetOutput(COleVariant(hexdata));
}
```

}

## 6.3 Command Select or Isolate Tag

To communicate with one tag the host must isolate one of the found tags. The host needs to send always all EPC bytes to the controller regardless how long

the EPC mask is specified in order to ensure the USB protocol. The complete report length is 64 bytes and needs to be taken into account in the Host Software.

This command is needed for a read or write operation in case there are several Tags found.

The correct sequence to operate that command is shown below:



Figure 6: Read or write operation in case of several tags

Command from host:

| Byte 0    | Byte 1 | Byte 2    | Byte 3 | Byte n+4   | Byte n+5byte 63 |
|-----------|--------|-----------|--------|------------|-----------------|
| Report ID | Frame  | Length of | EPC    | EPC byte n | ruf             |
| 0x33      | length | EPC mask  | byte 0 |            |                 |

Table 31: Command frame: Select tag from host

The tag information is used to select one tag. If the access password is zero, the controller did not access the Tag.

Response from microcontroller:

| Byte0/ID | Byte1        | Byte2      |
|----------|--------------|------------|
| 0x34     | Frame length | Error byte |

Table 32: Command frame: No access to tag

The error byte Information is described in Annex A

**Ec.** Send: 33 0F 0C 01 02 03 04 05 06 07 08 09 10 6A 0F

Receive: 34 03 00

Find the tag - 01 02 03 04 05 06 07 08 09 10 6A 0F

If receive: 34 03 09

Not find the tag.

Click the SelectTag button on the serial port debugging tool, pop SelectTag dialog box, see below:

| 👉 rfid_uart                                                                                                                           |                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Port :       COM3 •         Baud :       115200 •         DataBits:       8 •         Parity :       NOME •         StopBits:       1 | N2 03 04 05 06 07 08 09 10 6A 0F                                               |
| FlowCtl: SetDtrRts -                                                                                                                  | SelectIag                                                                      |
| PortOpened<br>ShowHex<br>ReceiveClr<br>HardWare<br>SelectTag<br>LockTag<br>Sett                                                       | Input EPC you will select:<br>01 02 03 04 05 06 07 08 09 10 11 12<br>OK Cancel |
| SCAN SetEPC SelectTag Se<br>READSETTINGS SetPassword LockTag                                                                          | SetNXP                                                                         |

Figure 7.

Then input EPC you will select, click the OK button.

## Codes are as follows:

```
void CGpsDlg::OnBUTTONSelectTag()
{
    // TODO: Add your control notification handler code here
    // TRACE("Select Tag\n");
    if(this->m_CSelectTagDlg.DoModal()==IDOK)
    {
        CByteArray hexdata;
        int len = this->m_Function.String2Hex(m_CSelectTagDlg.m_EditSelectEPC,hexdata);
        if(len ==12)
        {
        BYTE buf[64];
    }
}
```

```
buf[0] = OUT_SELCET_TAG;
                                           // Report ID;0x33 lwm
         buf[1] = sizeof(buf);
         buf[2] =len;
                           //// EPC size
         for(int n=0;n<hexdata.GetSize();n++)
         {
             buf[n+3] = hexdata.GetAt(n);
         }
         //
             CByteArray hexdata;
         this->m Function.ByteToByteArray(buf,sizeof(buf),hexdata);
         this->m_CommCtrl.SetOutput(COleVariant(hexdata));
    }
    else
         MessageBox("EPClength!=12");
}
```

## 6.4 Command Write to Tag/Set EPC AccessPassword

## 6.4.1 Command Write to Tag

To write some information into the tag this function is used.

Command from host:

}

| Byte  | Byte1  | Byte2  | Byte3  | Byte[4]  | Byte 8 | Byte[9]—  | Byte[2*n+1 |
|-------|--------|--------|--------|----------|--------|-----------|------------|
| 0     |        |        |        | —        |        | Byte[2*n+ | 0]         |
|       |        |        |        | Byte[7]  |        | 9]        | Byte63     |
| Repo  | Frame  | Memory | Tag    | Access   | Data   | Data[2×n] | rfu        |
| rt ID | Length | bank   | memor  | Passwor  | length |           |            |
| 0x35  |        |        | у      | d        | n      |           |            |
|       |        |        | Addres | (4 bytes | in     |           |            |
|       |        |        | s(in   | Long)    | words  |           |            |
|       |        |        | words) |          |        |           |            |

Table 33: Command frame: Write to Tag from host

Response from microcontroller:

| Byte0/ID | Byte1        | Byte2      | Byte3                   |
|----------|--------------|------------|-------------------------|
| 0x36     | Frame length | Error byte | Number of words written |

Table 34: Command frame: Write to Tag from controller

The controller sends back an error byte if anything goes wrong. The error byte Information is described in Annex A.

Ec. Send: 35 15 01 02 00 00 00 00 06 01 02 03 04 05 06 07 08 09 10 11 12

| Receive: 36 04 00 0 | No error.                            |  |  |
|---------------------|--------------------------------------|--|--|
| Value               | Meaning                              |  |  |
| 0x15                | Frame length,0x15=21                 |  |  |
| 0x01                | MEM_EPC,see table 4                  |  |  |
| 0x02                | EPC memory space, see table 41       |  |  |
| 0x00 0x00 0x00 0x00 | Access password, default:00 00 00 00 |  |  |
| 0x06                | Written words,6*2=12 byte            |  |  |
| 0x01 0x02 0x03 0x04 |                                      |  |  |
| 0x05 0x06 0x07 0x08 | The numbers written into the tag     |  |  |
| 0x09 0x10 0x11 0x12 |                                      |  |  |
| 0x36                | Answering sends 0x35                 |  |  |
| 0x04                | Frame length                         |  |  |
| 0x00                | No error                             |  |  |
| 0x06                | Written words,6*2=12 byte            |  |  |

**Notes:** Before you write, you should find/select the tag that you want to write first. When you find it, you can change the tag number. Find the tag:

01 02 03 04 05 06 07 08 09 10 6A 0F

Click the SetEPC button, see below:

| 👉 rfid_uart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Port       : COM3       Image: Status: COM Port Closed Set DirRts: +12V         Baud       : 115200       Image: Status: +12V         Baud       : 115200       Image: Status: +12V         DataBits:       8       Image: Status: +12V         DataBits:       8       Image: Status: +12V         Parity:       8       Image: Status: +12V         Parity:       8       Image: Status: +12V         StopBits:       1       Image: Status: +12V         Image: StopBits:       1       Image: Status: +12V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ysed<br>ypened<br>10 OZ 30 00 01 02 03 04 05 06 07 08 09 10 6A OF<br>00 OZ 30 00 01 02 03 04 05 06 07 08 09 10 11 12                |
| FlowCtl: SetDtrRts -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SetEPC X                                                                                                                            |
| PortOpened<br>▼ ShowHex<br>ReceiveClr<br>HardWare<br>SoftWare<br>ScAN<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan<br>Scan | CurrentAccessPassord:         00 00 00 00           NewEPC:         01 02 03 04 05 06 07 08 09 10 11 12           OK         Cancel |
| READSETTINGS SetPassword Loci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | kTagSetNXP                                                                                                                          |

Figure 8.

23

#### Codes are as follows:

```
void CGpsDlg::OnBUTTONSetEPC()
 {
    // TODO: Add your control notification handler code here
    TRACE("SetEPC\n");
    if(this->m CSetEPCDlg.DoModal()==IDOK)
    {
         CByteArray hexdata, hexdata password, hexdata epc;
         int len;
         len=
this->m Function.String2Hex(m CSetEPCDlg.m EditCAPassword,hexdata password);
         if(len != 4)
         ł
             MessageBox("PasswordLength!=4!","error");
             return ;
         }
         len = this->m Function.String2Hex(m CSetEPCDlg.m EditNewEPC,hexdata epc);
         if(len !=12)
         ł
             MessageBox("NewEPCLength!=12!","error");
             return ;
         }
         BYTE buf[64];
         buf[0]= OUT_WRITE_TO_TAG; // Report ID; lwm OUT_WRITE_TO_TAG = 0x35
         buf[1] = sizeof(buf);
         buf[2] = MEM EPC;
                                             // Bank: EPC
                                                               MEM EPC =0X01; LWM
         buf[3] = MEMADR EPC;
                                             //Address
                                                            #define
                                                                         MEMADR EPC
0x02
         for(int n=0;n<hexdata password.GetSize();n++)
         ł
             buf[n+4] = hexdata password.GetAt(n);
         buf[8] = hexdata epc.GetSize()/2;//getlength in words
         for(int m=0;m<hexdata_epc.GetSize();m++)</pre>
         ł
             buf[m+9] = hexdata epc.GetAt(m);
         this->m Function.ByteToByteArray(buf,sizeof(buf),hexdata);
         this->m_CommCtrl.SetOutput(COleVariant(hexdata));
    }
 }
```

After this command, if you write with no error, the EPC has been changed. The new EPC is as follows:

## 01 02 03 04 05 06 07 08 09 10 11 12

## 6.4.2 Set EPC AccessPassword

You can set EPC access password using this command.Do follow these steps:

Find the fag number Command Inventory  $\rightarrow$  Pick one Tag out of the population found  $\rightarrow$ Command Select or Isolate Tag  $\rightarrow$  Individual commands to Tag like read or write, set password

When you use command select tag and the tag you want to set is present,

Send: 35 0D 00 02 00 00 00 00 02 11 22 33 44

| Receive: 36 04 00 02 | No error.                                   |  |  |
|----------------------|---------------------------------------------|--|--|
| Value                | Meaning                                     |  |  |
| 0x0D                 | Frame length                                |  |  |
| 0x00                 | MEM_RES,see table 4                         |  |  |
| 0x02                 | EPC memory space, see table 41              |  |  |
| 0x00 0x00 0x00 0x00  | CurrentAccess password, default:00 00 00 00 |  |  |
| 0x02                 | Written words,2*2=4 byte                    |  |  |
| 0x11 0x22 0x33 0x44  | New password                                |  |  |

Click the SetPassword button, see below:

| 👪 gps                                                                                                                                                               |                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Port       : COM4       ▼         Baud       : 115200       ▼         DataBits:       8       ▼         Parity       NONE       ▼         StopBits:       1       ▼ | osed<br>Opened<br>+41<br>OD OE 30 00 01 02 03 04 05 06 07 08 09 10 11 12<br>SetPassord |
| PortOpened<br>PortOpened<br>ShowHex<br>ReceiveClr<br>AddCtr1Z<br>HardWare<br>SoftWare<br>ScAN<br>READSETTINGS<br>SetPrassword                                       | CurrentAccessPassword: 00 00 00 00<br>NewPassword: 11 22 33 44<br>OK Cancel            |

#### Figure 9.

#### Codes are as follows:

```
void CGpsDlg::OnBUTTONSetPassword()
 {
    // TODO: Add your control notification handler code here
    TRACE("Set password\n");
    if(this->m_CSetPasswordDlg.DoModal()==IDOK)
    {
         CByteArray hexdata, hexdata_Curpassword, hexdata_newpassword;
         int len;
         len=
this->m Function.String2Hex(m CSetPasswordDlg.m EditCuAPassword,hexdata Curpassword);
         if(len != 4)
         {
             MessageBox("PasswordLength!=4!","error");
             return ;
         }
         len
this->m Function.String2Hex(m CSetPasswordDlg.m EditNewPassword,hexdata newpassword)
         if(len != 4)
         Ş
             MessageBox("PasswordLength!=4!","error");
             return ;
         BYTE buf[64];
         buf[0] = OUT WRITE TO TAG; // Report ID; lwm OUT WRITE TO TAG = 0x35,
         buf[1] = sizeof(buf);
         buf[2] = MEM RES; // MEM RES 0X00
         BYTE wordaddr = 0;
         wordaddr += 2;
         buf[3] = wordaddr;
         for(int n=0;n<hexdata Curpassword.GetSize();n++)
         ł
             buf[n+4] = hexdata_Curpassword.GetAt(n);
         buf[8]=hexdata newpassword.GetSize()/2;//getlength in words
          for(int m=0;m<hexdata newpassword.GetSize();m++)
         ł
             buf[m+9] = hexdata_newpassword.GetAt(m);
         }
```

this->m\_Function.ByteToByteArray(buf,sizeof(buf),hexdata);

 $this-\!\!>\!\!m\_CommCtrl.SetOutput(COleVariant(hexdata));$ 

}

}

Click the OK button, it receives: 36 04 00 02

## 6.4.3 Write to MEM\_USER

First select the tag you want to read, codes are as follows:

```
void Crfid uartDlg::OnBUTTONWriteMemUsr()
 {
    // TODO: Add your control notification handler code here
    TRACE("OnButtonWrite Mem USR\n");
    if(this->m CWriteMemUsrDlg.DoModal() == IDOK)
    {
      CByteArray hexdata, hexdata MemUsrAdr, hexdata data;
        int len:
        len
this->m Function.String2Hex(this->m CWriteMemUsrDlg.m MemUsrAdr,hexdata MemUsrAdr
);
        if(len != 1)
         ł
             MessageBox("MemUsrAdrLength!=1!","error");
             return ;
         ł
        len
this->m Function.String2Hex(this->m CWriteMemUsrDlg.m EditMemUsrData,hexdata data);
        if(len !=16)
         ł
             MessageBox("MemUsrDataLength!=16!","error");
             return ;
        BYTE buf[64];
        buf[0] = OUT_WRITE_TO_TAG; // Report ID; lwm OUT_WRITE_TO_TAG = 0x35,
        buf[1] = sizeof(buf);
        buf[2] = MEM USER;
                                        // Bank: 0X03;
        buf[3] = hexdata MemUsrAdr.GetAt(0);
        //for(int n=0;n<hexdata password.GetSize();n++)
    //
        {
             buf[n+4] = hexdata password.GetAt(n);
        //
    //
        buf[4] = 0x00;
                          // Password, not used
```

```
buf[5] = 0x00; // Password, not used
buf[6] = 0x00; // Password, not used
buf[7] = 0x00; // Password, not used
buf[8] = hexdata_data.GetSize()/2;//getlength in words
for(int m=0;m<hexdata_data.GetSize();m++)
{
    buf[m+9] = hexdata_data.GetAt(m);
    }
    this->m_Function.ByteToByteArray(buf,sizeof(buf),hexdata);
    this->m_CommCtrl.SetOutput(COleVariant(hexdata));
}
```

Byte 3, namely the address, you can enter 00 or other.

**Notes:** the address should be entered **in words**, and the memory size is 64 byte.

Then enter the data: e0 e1 f2 f3 f4 f5 f6 f7 f8 f9 fa fb fc fd fe ff

| 👉 rfid_uart                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                 |                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Port       :       COM4       ST         Baud       :       115200       IN         DataBits:       8       .       .         Parity       :       NONE       .         StopBits:       1       .       .         FlowCtl:       SetDtrRts       .       .         PortOpened       .       .       . | TATUS:COM Port Closed<br>etDtrRts:+12V<br>15200, n, 8, 1 Com4 Opened<br>ello 20110324 World<br>NTVCO_1wm<br>Oe<br>wm_as399xInitialize() returned 000e<br>"AS3991 ROGER Reader Hardware 1.2<br>#AS3991 Mini Reader Hardware 1.5.1<br>4 16 01 DB 54 3A 0D 0E 30 00 01 02 03 04 05 06 07 08 09 10 0A 0B<br>4 03 00 | *                    |
| ShowHex                                                                                                                                                                                                                                                                                               | WriteMemUsr                                                                                                                                                                                                                                                                                                     |                      |
| ReceiveClr<br>HardWare WriteTag                                                                                                                                                                                                                                                                       | WriteMemU Address(InWord): 00                                                                                                                                                                                                                                                                                   | •                    |
| SoftWare SelectT<br>SCAN SetEPC<br>READSETTINGS SetPassw                                                                                                                                                                                                                                              | LockTag     Data:     c0 c1 f2 f3 f4 f5 f6 f7 f8 f9 fa fb f       C     SelectT     OK     Ca                                                                                                                                                                                                                   | fc fd fe ff<br>ancel |

Figure 10.

Click the OK button, receive: 36 04 00 08

It means you have written 16-byte data from the address 00.

| 🚽 rfid_uart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 🛛 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Port : COW4       StATUS: COM Port Closed         Baud : 115200       StDtrRts:+12V         DataBits:       None         Parity:       NONE         StopBits:       Image: Comparison of the stop of t |   |
| ReceiveClr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |

## Figure 11.

After this, read the MEM\_USER, you can see the data written before.

| 🕂 rfid_uart                      |                                                                                                                                                                                           |   |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Port : 0004 -                    | Kello 20110324 World<br>INTVCO_Lwm                                                                                                                                                        | • |
| Baud : 115200 -<br>DataBits: 8 - | . 0e<br>1wn_as399xInitialize() returned 00De<br>≪AS3991 ROGER Reader Hardware 1.2                                                                                                         |   |
| StopBits: 1  FlowCtl: SetDtrRts  | ##AS3991 Mini Reader Firmware 1.5.1<br>44 16 01 DB 54 3A 0D 0E 30 00 01 02 03 04 05 06 07 08 09 10 0A 0B<br>34 03 00<br>35 04 00 08<br>34 03 00                                           | E |
| PortOpened                       | 38 3E 00 1D EO E1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 |   |
| I ShowHex<br>ReceiveClr          |                                                                                                                                                                                           |   |

Figure 12.

## 6.5 Command Read from Tag Implemented

## This command can be used to read data from the tag.

#### Command from host:

| Byte<br>0/ID | Byte 1          | Byte 2         | Byte 3                             | Byte 4                  | Byte 5,6,7,8 |
|--------------|-----------------|----------------|------------------------------------|-------------------------|--------------|
| 0x37         | Frame<br>length | Memory<br>bank | Tag memory<br>Address(in<br>words) | Data length<br>in words | ruf          |

Table 35: Command frame: Read from Tag from host

#### Command from controller:

| Byte 0/ID | Byte 1       | Byte 2     | Byte 3               | Variable |
|-----------|--------------|------------|----------------------|----------|
| 0x38      | Frame length | Error byte | Data length in words | Data[n]  |

 Table 36: Command frame: Read from Tag from controller

The error byte Information is described in Annex A.

**Ec.** Send: 37 05 01 02 06

Receive: 38 10 00 06 01 02 03 04 05 06 07 08 09 10 11 12

Read out the information of the tag you want. But you should select the tag first.

```
Now present: EPC-01 02 03 04 05 06 07 08 09 10 0A 0B
```

You have selected the tag successfully, now you can read it, see below:

## 6.5.1 Read MEM\_TID

## Codes are as follows:

buf[6] = 0x00; // Password, not used buf[7] = 0x00; // Password, not used buf[8] = 0x00; // Password, not used CByteArray hexdata;

 $this->m\_Function.ByteToByteArray(buf,size of(buf),hexdata);$ 

this->m\_CommCtrl.SetOutput(COleVariant(hexdata));

}

Receive: 38 0C 83 04 E2 00 60 03 00 BF 81 3C

| Value          | Meaning                                                      |  |  |  |
|----------------|--------------------------------------------------------------|--|--|--|
| 0x0C           | Frame length                                                 |  |  |  |
| 0.402          | The specified memory location does not exist or the PC value |  |  |  |
| 0x65           | is not supported by the tag                                  |  |  |  |
| 0x04           | length in words for E2 00 60 03 00 BF 81 3C                  |  |  |  |
| 0xE2           | EPC_TID_CLASS_ID_2                                           |  |  |  |
| 00 6           | manufacturer,NXP                                             |  |  |  |
| 0 03           | model                                                        |  |  |  |
| 0x00 0xBF 0x81 | Sorial Number                                                |  |  |  |
| 0x3C           | Serial Nulliber                                              |  |  |  |
| model          | Description                                                  |  |  |  |
| 001            | UCODE EPC G2                                                 |  |  |  |
| 003            | UCODE G2XM                                                   |  |  |  |
| 004            | UCODE G2XL                                                   |  |  |  |

The serial port debugging tool is as follows:

| 💠 rfid_uart                                                                                                                                                                                | 🛛 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Port : 00H4       ▼         Baud : 115200       ▼         DataBits: 8       ▼         Parity : NOHE       ↓         StopBits: 1       ▼         Port0pened       ▼         ShowHex       ✓ |   |
| ReceiveClr                                                                                                                                                                                 |   |

Figure 13.

## 6.5.2 Read MEM\_EPC

## Codes are as follows:

void Crfid\_uartDlg::OnBUTTONReadTagEPC() //READ MEM\_EPC { // TODO: Add your control notification handler code here TRACE("OnButtonReadTag\_MemEPC\n"); BYTE buf[9]; buf[0] = OUT\_READ\_FROM\_TAG; // Report ID; 0x37 buf[1] = sizeof(buf); buf[2] = MEM EPC; // 0x01unsigned short address = 0;buf[3] = address; unsigned char count = 0; buf[4] = count;// Data Length buf[5] = 0x00;// Password, not used buf[6] = 0x00;// Password, not used // Password, not used buf[7] = 0x00;buf[8] = 0x00;// Password, not used CByteArray hexdata; this->m\_Function.ByteToByteArray(buf,sizeof(buf),hexdata); this->m CommCtrl.SetOutput(COleVariant(hexdata)); }

## 

| Value                         | Meaning                                         |
|-------------------------------|-------------------------------------------------|
| 0x38                          | Answering sends 0x37                            |
| 0x26                          | Frame length                                    |
| 0,482                         | the specified memory location does not exist or |
| 0x85                          | the PC value is not supported by the tag;       |
| 0x11                          | Length in words for the datas behind            |
| 0x4E 0x08 0x30 0x00 0x01 0x02 |                                                 |
| 0x03 0x04 0x05 0x06 0x07 0x08 |                                                 |
| 0x09 0x10 0x0A 0x0B 0x00 0x00 | The detection out                               |
| 0x00 0x00 0x00 0x00 0x00 0x00 | The ualas read out                              |
| 0x00 0x00 0x00 0x00 0x00 0x00 |                                                 |
| 0x00 0x00                     |                                                 |

|   | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 |
|---|----|----|----|----|----|----|----|----|
| 1 | 4e | 08 | 30 | 00 | 01 | 02 | 03 | 04 |
| 2 | 05 | 06 | 07 | 08 | 09 | 10 | 0a | 0b |
| 3 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 |
| 4 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 |
| 5 | 00 | 00 |    |    |    |    |    |    |
|   |    |    |    |    |    |    |    |    |
|   |    |    |    |    |    |    |    |    |
|   |    |    |    |    |    |    |    |    |
|   |    |    |    |    |    |    |    |    |
|   |    |    |    |    |    |    |    |    |

The serial port debugging tool is as follows:

| 👉 rfid_uart                                                                                       |                                                                                                                                                                                                                                                                                                                                               | × |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Port : COM4<br>Baud : 115200<br>DataBits: 8<br>Parity : NONE<br>StopBits: 1<br>FlowCtl: SetDtrRts | STATUS: COM Port Closed<br>SetDirRts: +12Y<br>115200, n, 8, 1 Com4 Opened<br>STATUS: COM Port Closed<br>SetDirRts: +12Y<br>115200, n, 8, 1 Com4 Opened<br>(*AS3991 ROGER Reader Hardware 1.2<br>(#AS3991 Mini Reader Firmware 1.5.1)<br>44 05 00 00 00<br>44 05 00 00 00<br>44 16 01 DC FC 37 0D 0E 30 00 01 02 03 04 05 06 07 08 09 10 0A 0B | 4 |
| PortOpened                                                                                        | 34 03 00<br>38 25 83 11 42 08 30 00 01 02 03 04 05 06 07 08 09 10 0A 0B 00 00 00 00 00<br>00 00 00 00 00 00 00 00                                                                                                                                                                                                                             | • |

Figure 14.

## 6.5.3 Read MEM\_USER

## Codes are as follows:

```
void Crfid_uartDlg::OnBUTTONReadMemUsr()
{
    // TODO: Add your control notification handler code here
    TRACE("OnButtonReadTag_Mem_USR\n");
    if(this->m_CReadMemUsrDlg.DoModal()==IDOK)
    {
```

=

```
BYTE buf[9];
    buf[0] = OUT READ FROM TAG; // Report ID; 0x37
    buf[1] = sizeof(buf);
    buf[2] = MEM USER;//
                                 = 0 \times 03,
    CByteArray hexdata;
    int len;
         len
this->m Function.String2Hex(this->m CReadMemUsrDlg.m EditMemUsrAdr,hexdata);
         if(len != 1)
         ł
              MessageBox("MemoryUsrAddressLength!=1!","error");
              return ;
    unsigned short address;
     address = hexdata.GetAt(0);
    buf[3] = address;
                        //In words of the memory
    unsigned char count = 0;
    buf[4] = count;
                                 // Data Length
    buf[5] = 0x00;
                       // Password, not used
    buf[6] = 0x00;
                       // Password, not used
    buf[7] = 0x00;
                       // Password, not used
    buf[8] = 0x00;
                       // Password, not used
    this->m Function.ByteToByteArray(buf,sizeof(buf),hexdata);
    this->m CommCtrl.SetOutput(COleVariant(hexdata));
    }
 }
```

Enter the 00 into the MEM\_USR\_address dialog box, click the OK button,

| Receive: | 38 3E 00 1D 11 22 33 44 55 66 |
|----------|-------------------------------|
|          | 77 88 09 10 11 12 13 14 15 16 |
|          | 17 18 19 20 21 22 23 24 25 26 |
|          | 27 28 29 30 31 32 33 34 35 36 |
|          | 37 38 39 40 41 42 43 44 45 46 |
|          | 47 48 49 50 51 52 53 54 55 56 |
|          | 57 58                         |

| Value                         | Meaning                              |
|-------------------------------|--------------------------------------|
| 0x38                          | Answering sends 0x37                 |
| 0x3E                          | Frame length                         |
| 0x00                          | No error                             |
| 0x1D                          | Length in words for the datas behind |
| 0x11 0x22 0x33 0x44 0x55 0x66 | The datas read out                   |
| 0x77 0x88 0x09 0x10 0x11 0x12 |                                      |

Select the tag, then click Read\_MEM\_USR button ,enter 1D(MEM\_USR\_address), see below:

| 👉 rfid_uart                                        |                                                                                                                                                                                                                                                                           |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Port       : COM4                                  | Opened<br>rld<br>ize() returne<br>ader Hardware 1.2<br>der Firmware 1.5.1<br>OD OE 30 00 01 02 03 04 05 06 07 08 09 10 0A 0B<br>33 44 55 66 77 88 09 10 11 12 13 14 15 16 17 18 19 20 21<br>28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46<br>53 54 55 56 57 58 |
| ShowHex                                            | ReadMemUsr 🛛 🔀                                                                                                                                                                                                                                                            |
| ReceiveClr<br>HardWare<br>SoftWare<br>SoftWare     | 피 Address(InWords HEX): 기D                                                                                                                                                                                                                                                |
| SCAN     SetEPC       READSETTINGS     SetPassword | oc OK Cancel                                                                                                                                                                                                                                                              |

Figure15.

Receive: 38 0A 83 03 59 60 61 62 63 64

| 🚽 rfid_uart                           |                                                                                                                                                                                                                                           | = 🛛 |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Port : COM4   Baud : 115200           | 115200,n,8,1 Com4 Opened<br>Hello 20110324 World<br>INTVC0_lwm<br>lwn_as399xInitialize() returne<br>d 0000                                                                                                                                |     |
| DataBits: <sup>8</sup> Parity : NDNE  |                                                                                                                                                                                                                                           |     |
| StopBits: 1 V<br>FlowCtl: SetDtrRts V | 44 16 01 9E FC 37 0D 0E 30 00 01 02 03 04 05 06 07 08 09 10 0A 0B<br>34 03 00<br>38 32 00 1D 11 22 33 44 55 66 77 88 09 10 11 12 13 14 15 16 17 18 19 20 21<br>22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 | E   |
| PortOpened                            | 47 48 49 50 51 52 53 54 55 56 57 58<br>34 03 00<br>38 0A 83 03 59 60 61 62 63 64                                                                                                                                                          |     |
| ShowHex                               |                                                                                                                                                                                                                                           |     |

#### Figure 16.

User memory size: 03+1D=0x20=32 words length = 64 bytes length,

The memory is:

```
11 22 33 44 55 66 77 88
09 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56
57 58 59 60 61 62 63 64
```

## 6.6 Command Lock Tag Memory

To lock a tag's memory address use this command.

Command from host:

| Byte 0/ID | Byte1        | Byte2       | Byte3        | Byte[4]byte[7]                |
|-----------|--------------|-------------|--------------|-------------------------------|
| 0x3B      | Frame Length | Lock/unlock | Memory space | Access Password(4 bytes long) |

Table 37: Command frame: Lock Tag Memory from host

Byte 2 is used to define the locking status:

| value | Description    |
|-------|----------------|
| 0x00  | Unlock         |
| 0x01  | Lock           |
| 0x02  | Permalock      |
| 0x03  | Lock&Permalock |

Table 38: Locking/Unlocking Byte

To select the memory space, which should be locked, Byte 3 is used:

| Value | Memory space    |
|-------|-----------------|
| 0x00  | Kill password   |
| 0x01  | Access password |
| 0x02  | EPC             |
| 0x03  | TID             |
| 0x04  | User            |

Table 39: Lock Memory Space

The controller sends back following frame:

| Byte 0         | Byte1        | Byte 2     |
|----------------|--------------|------------|
| Report ID 0x3C | Frame length | Error byte |

Table 40: Command frame: Lock Tag Memory from controller

The error byte Information is described in Annex A

You should first select the tag whose memory you want to lock, then use this command.

Ec. Send: 3B 08 01 02 11 22 33 44

Receive: 3C 04 00 00

No error.

Error message such as: 3C 04 09 00

**Notes:** After you have locked the tag memory, the tag can not be written or read.

Click the LockTag button, pop LockTag dialog box, enter current password, chose Lock option, see below:

| Fort :       COM4       ▼         Baud :       115200       ▼         Baud :       115200       ▼         DataBits:       8       ✓         Parity :       NONE       ♥         StopBits:       1       ▼         FlowCtl:       SetDtrRts:       ↓ | ne<br>e 1.5.1<br>re 1.2<br>0 01 02 03 04 05 06 07 08 09 10 0A 0B |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| PortOpened                                                                                                                                                                                                                                          | LockTag                                                          |
| I ShowHex<br>ReceiveClr                                                                                                                                                                                                                             | MemorySpce:EPC                                                   |
| HardWare WriteTag LockTag                                                                                                                                                                                                                           | Action: Lock 💌                                                   |
| SoftWare SelectTag SelectTag                                                                                                                                                                                                                        | CurrentAccessPassword: 11 22 33 44                               |
| SCAN SetEPC<br>READSETTINGS SetPassword LockTag                                                                                                                                                                                                     | OK Cancel                                                        |

#### Figure 17.

## Codes are as follows:

```
void CGpsDlg::OnBUTTONLockTag()
 {
    // TODO: Add your control notification handler code here
    TRACE("LockTag\n");
    if(this->m_CLockTagDlg.DoModal()==IDOK)
    {
         int
LockMode=this->m_CLockTagDlg.m_LockStatus;//m_ComboLockStatus.GetCurSel();
         CByteArray hexdata, hexdata Curpassword;
         int len;
         len=
this->m_Function.String2Hex(m_CLockTagDlg.m_EditCurAPassword,hexdata_Curpassword);
         if(len != 4)
         {
             MessageBox("PasswordLength!=4!","error");
             return ;
         }
          BYTE buf[64];
         buf[0] = OUT_LOCK_UNLOCK;// 0x3b
         buf[1] = sizeof(buf);
         buf[2] = LockMode;
         buf[3] = 0x02;//EPC memory space
```

}

```
for(int n=0;n<hexdata_Curpassword.GetSize();n++)
{
     buf[n+4] = hexdata_Curpassword.GetAt(n);
}
this->m_Function.ByteToByteArray(buf,sizeof(buf),hexdata);
this->m_CommCtrl.SetOutput(COleVariant(hexdata));
}
```

## 6.7 Command Kill Tag

To kill a tag this command must be used.

Command from host:

| Byte 0/ID | Byte 1          | Byte 2 & Byte 3    | Byte 4 & Byte 5     | Byte 6 |
|-----------|-----------------|--------------------|---------------------|--------|
| 0x3D      | Frame<br>length | Kill Password[015] | Kill Password[1632] | ruf    |

Table 41: Command frame Kill Tag from host

The host has to know or read the kill password and send it to the controller.

The 3 lower bits of the rfu/recom represents the rfu value

The 3 lower Bits of the high nibble represents the recom value.

Response from device:

| Byte 0/ID | Byte 1       | Byte 2     |
|-----------|--------------|------------|
| 0x3E      | Frame length | Error byte |

*Table 42: Command frame Kill Tag from controller* The error byte Information is described in Annex A

**Notes:** This command makes the label permanently disabled and protecting the privacy of its own. If you do not want to use a product or find security privacy issues, you can use the kill command to stop the chip function which prevents reading the chip illegally and improves data security. The inactivated label will be guaranteed to be inactivated in any case, it does not produce modulated signals to activate RF.

## 6.8 NXP User Command set

To lock a tag's memory address use this command.

Command from host:

| Byte0/ID | Byte1        | Byte2   | Byte3                 | Byte[4]byte[7]  |
|----------|--------------|---------|-----------------------|-----------------|
| 0x45     | Frame length | command | Bit status infomation | Access password |
|          |              |         |                       | (4 bytes long)  |

Table 43: Command frame: NXP user Commands

Byte 3 is used to define the NXP Command:

| value | Description                |
|-------|----------------------------|
| 0x01  | EAS Command Bit set/reset  |
| 0x02  | Read Protect Bit set/reset |
| 0x04  | EAS Alarm execute          |
| 0x08  | Calibrate execute          |
|       |                            |

Table 44: NXP Command Byte

To define the action of the command, Byte 2 is used. Byte 3 defines the status of the appropriate Bit in EAS command and Read protect. In case the value of Byte 3 is 0x01, the correct Bit will be set. Byte three will have no function in EAS Alarm and Calibrate.

The controller sends back following frame:

| Byte 0  | Byte 1       | Byte2      |
|---------|--------------|------------|
| ld 0x46 | Frame length | Error byte |

Table 45: Command frame: Lock Tag Memory from controller

The error byte Information is described in Annex A



Figure18. NXP user command – flow chart

You should select the tag you want and set the access password first, then use this command.

## Ec. Send: 45 08 02 01 11 22 33 44

| Receive: 46 05 00   | 00 00 No error.            |
|---------------------|----------------------------|
| Value               | Meaning                    |
| 0x02                | Read Protect Bit set/reset |
| 0x01                | Set the bit                |
| 0x11 0x22 0x33 0x44 | Current password           |

**Notes:** The effect of this command is a switch of read protect. After set the read protect bit, the correct label number can not be read.

Now send: 43 03 01

#### 00

Click the SetNXP button, see below:

| 🚽 rfid_uart                                                                                                                                                                                      |                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Port         CON4         STATUS: CON Fort Closed           Status: +12V         Status: +12V           Baud         115200         4/283991           DataBits:         8         34         03 | d<br>ardware 1.2<br>30 00 01 02 03 04 05 06 07 08 09 10 0A 0B |
| Parity : HONE -                                                                                                                                                                                  | SetDXP 🗙                                                      |
| StopBits: 1 V<br>FlowCtl: SetDtrRts V<br>PortOpened                                                                                                                                              |                                                               |
| ReceiveClr                                                                                                                                                                                       | Command: Set Read Protect 02 01                               |
| HardWare VriteTag                                                                                                                                                                                | AccessPassword: 11 22 33 44                                   |
| SoftWare SelectTag LockTag Staw SetEPC SelectTag                                                                                                                                                 | OK Cancel                                                     |

## Figure 19.

ł

## Codes are as follows:

void Crfid\_uartDlg::OnBUTTONSetNXP()

// TODO: Add your control notification handler code here TRACE("SetNXP\n"); if(this->m\_CSetNXPDlg.DoModal()==IDOK)

```
{
         CByteArray hexdata, hexdata AccessPassword, hexdata NXPCommand;
          int len;
         len=
this->m_Function.String2Hex(m_CSetNXPDlg.m_EditAccessPassword,hexdata_AccessPassword
);
         if(len != 4)
         {
             MessageBox("PasswordLength!=4!","error");
             return ;
         len
=this->m Function.String2Hex(m CSetNXPDlg.m NXPCommand,hexdata NXPCommand);
         if(len != 2)
         {
             MessageBox("NXPCommandLength!=2!","error");
             return ;
         }
         BYTE buf[64];
             buf[0] = OUT_NXP_COMMAND;//OUT_NXP_COMMAND = 0x45,
             buf[1] = sizeof(buf);
             buf[2] = hexdata NXPCommand.GetAt(0);
             buf[3] = hexdata NXPCommand.GetAt(1);
             for(int n=0;n<hexdata AccessPassword.GetSize();n++)</pre>
             {
                 buf[n+4] = hexdata AccessPassword.GetAt(n);
             }
         this->m Function.ByteToByteArray(buf,sizeof(buf),hexdata);
         this->m CommCtrl.SetOutput(COleVariant(hexdata));
    }
 }
```

```
Send: 45 08 02 00 11 22 33 44
```

Receive: 46 05 00 00 00

| Value               | Meaning                    |
|---------------------|----------------------------|
| 0x02                | Read Protect Bit set/reset |
| 0x00                | Reset the bit              |
| 0x11 0x22 0x33 0x44 | Current password           |

Now the read protect is cancelled, click the SCAN button, the serial port debugging tool receives: 44 16 01 AE FC 37 0D 0E 30 00 01 02 03 04 05 06 07 08 09 10 0A 0B

| 👉 rfid_uart                                                                                                                                                                                   | 🛛 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Port : COM4       ▼         Baud : 115200       ▼         DataBits:       8         Parity : NOME       ▼         PlowCtl:       SetDtrRts         PortOpened       ✓         ShowHex       ✓ | 4 |
| ReceiveClr                                                                                                                                                                                    |   |

Figure 20.

## This document support Roger, Mirco and Colt product

# ElecKits Technoliges, Inc. Tel: +86-0-18052482750 E-mail: sales@eleckits.com WEB : http://fid.eleckits.com Store : http://www.eleckits.com

44