

 page 1/26

USB Protocol Documentation for Pc Applications

Confidential

ST25RU3993

 page 2/26

Table of Contents

1 Introduction .. 4

1.1 Purpose .. 4

1.2 Terms and Abbreviations ... 4

2 Protocol Architecture .. 5

2.1 Protocol from Host to Device ... 5

2.1.1 Protocol Summary .. 5

2.1.2 Byte Stream Assembly ... 6

2.2 Protocol from Device to Host ... 7

2.2.1 Protocol Summary .. 7

2.2.2 Byte Stream Assembly ... 8

2.3 Predefined Protocol IDs ... 9

3 Implementation for PC Host ... 11

3.1 The ams Communication Project ... 11

3.2 Communication Classes .. 11

3.3 Set up a Communication .. 13

4 Implementation for Microchip Device Firmware ... 15

4.1 USB and Stream Modules ... 15

4.2 Streaming Implementation ... 15

4.3 Implementation of Application Commands in firmware.. 16

5 Example ... 18

5.1 Byte Stream ... 18

5.2 GUI Implementation ... 19

5.3 Firmware Implementation .. 22

6 Additional Information .. 23

6.1 Recording USB Stream Data ... 23

6.2 XML Stream Player .. 24

6.3 Compatibility to old Format .. 24

ST25RU3993 USB Protocol Documentation for PC Applications www.silicontrol.com

 page 3/26

Revision History

Revision Date Originator Description

0.7 24.01.2017 first Draft (uncontrolled)

0.8 31.01.2017 Reviewed

0.9 01.03.2018 Changes of review added

1.0 22.04.2018 Release V1.0

ST25RU3993 USB Protocol Documentation for PC Applications www.silicontrol.com

 page 4/26

1 Introduction

USB is a serial bus system for connections between computer and external devices. HID is a device

class of USB for PCs which is usually used for PC input devices (keyboard, mouse …). The ams

framework is using HID for the communication between ams application boards and a PC. This

document describes the USB communication StreamV2.

StreamV2 is a special implementation for USB communication between PCs and ams AG

applications.

StreamV2 uses defined protocols. Chapter 2 gives a detailed description about the ams protocol

architecture. The implementation for the PC-side is supported by the ams communication project

which provides communication classes written in C++. The ams Communication Project will be

described in Chapter 3. For the firmware side implementation, ams application boards use a

microcontroller from Microchip. The used microcontroller supports USB and provides modules for

the communication. ams has additional software modules for the adaption to the ams USB protocol

and application firmware. Chapter 4 explains the firmware implementation in C. An example for

setting up a communication for ams applications is given in Chapter 5.

For more information about the USB (Universal Serial Bus) Standard visit www.usb.org.

1.1 Purpose

This document describes the USB communication between a PC and ams application boards with a

Microchip MCU using ams Streaming Classes.

1.2 Terms and Abbreviations

Term/ Abbreviation Description

USB Universal Serial Bus

HID Human Interface Device

ASCII American Standard Code for Information Interchange

HEX Hexadecimal

GUI Graphical User Interface

TID Transaction ID

MCU Microcontroller Unit

rx-prot Buffer Size for the serialize Data

tx-prot Buffer Size for the deserialize Data

LSB Least Significant Byte

MSB Most Significant Byte

LSb Least Significant Bit

MSb Most Significant Bit

IDE Integrated Development Environment

0x Values with 0x prefix must be interpreted as HEX-Values.

I2C Inter-Integrated Circuit

SPI Serial Peripheral Interface

PC Personal Computer

ST25RU3993 USB Protocol Documentation for PC Applications www.silicontrol.com

http://www.usb.org/

 page 5/26

2 Protocol Architecture

This chapter describes the format of the StreamV2 USB HID Protocol. Additionally, the assembling

and disassembling of the protocol is described. A distinction is made between the transfer from host

to device and from device to host.

2.1 Protocol from Host to Device

2.1.1 Protocol Summary

The following table describes the byte-stream of the protocol from host to device.

Table 2.1: Protocol Summary Host to Device

Byte Content Description

0 TID Transaction ID, changes with every report send

1 Payload Number of valid bytes in the current HID report (max. 64 bytes for
HID)

2 Reserved Reserved Byte

3 Protocol Protocol Byte, defining the Command for the first protocol packet

4 tx-prot MSB MSB for number of bytes to transmit in this protocol packet

5 tx-prot LSB LSB for number of bytes to transmit in this protocol packet

6 rx-prot MSB MSB for number of bytes expected to receive for this protocol
packet

7 rx-prot LSB LSB for number of bytes expected to receive for this protocol
packet

8 …+tx-prot
– 1

Data Protocol Data to be sent to the Device

8 + tx-prot Protocol B Protocol Command for the second protocol packet B

9 + tx-prot tx-prot B MSB MSB for number of bytes to transmit in protocol packet B

10 + tx-prot tx-prot B LSB LSB for number of bytes to transmit in protocol packet B

11 + tx-prot rx-prot B MSB MSB for number of bytes expected as response to protocol packet
B

12 + tx-prot rx-prot B LSB LSB for number of bytes expected as response to protocol packet
B

13 + tx-prot
B

Data Protocol Data of packet B

… … …

Note:

 The tx-prot value consists of 2 bytes, the tx-prot MSB and the tx-prot LSB, but the maximum

amount of data in a single packet is limited to 1024+64 bytes (defined in ams_stream.h). This is

necessary as the device must handle a complete packet and the data memory on the MCU is

limited.

 On the host side, the TID is generated as a 4-bit number counting from 0 to 0x0F, and then

starting from 0 again.

ST25RU3993 USB Protocol Documentation for PC Applications www.silicontrol.com

 page 6/26

The device side takes the TID received from the Host and moves it to the upper nibble,

increments its own TID counter by one (range is again 0 to 0x0F) and inserts its own TID in the

lower nibble.

At the device (txTID is the TID of the device, rxTID is the TID received from the host):

TID = (rxTID << 4) | (++txTID & 0xF)

2.1.2 Byte Stream Assembly

The generation of the byte stream at the PC is done in three steps.

Note: The last line in the tables is the byte index in the packet.

Step1: AmsComObject

The AmsComObject class provides the data in a single packet.

Protocol Data

Data

0 1 … tx-size – 1

Step2: Stream Driver

The stream driver on the host side takes a single data packet and adds the protocol header.

Protocol Header Protocol Data

Protocol ID Tx-Protocol Rx-Protocol Data

0 1 2 3 4 5 … 4 + tx-size

Step3: HID Driver

The HID driver provides a communication channel and transmits the data. For this, the HID driver

on the host side cuts the data from the stream driver into packets that fit into a HID report. A HID

report has a maximum size of 64 bytes. These 64 bytes include also the HID driver header (that has

a size of 3 bytes). So the total payload in one HID packet is 61 bytes.

The following section describes the various scenarios that can occur (e.g. packet fits in 1 HID

report, packet is more than 61 bytes – need more than one HID report, several small packets fit in 1

HID report, etc.).

Data buffer fits in one HID Report:

The report will be filled up to 64 Bytes if necessary.

HID Driver Header Protocol Packet(s)

TID Payload Reserved Data Padding Data

0 1 2 3 … 2+payload … 63

Protocol Packet(s) need more than one HID Report

The payload of all HID Reports except the last report is 61(64 bytes – 3 header bytes).

As many reports as needed for transmitting the packet(s) are generated.

ST25RU3993 USB Protocol Documentation for PC Applications www.silicontrol.com

 page 7/26

The first HID Report (Payload is set to 61):

HID Driver Header Protocol Packet(s)

TID Payload Reserved Data

0 1 2 3 … 63

The next HID Reports get a new TID (Payload is still set to 61).

HID Driver Header Protocol Packet(s)

New TID Payload Reserved Data

0 1 2 3 … 63

The Last Report looks the same like in the case where the protocol packet fits in 1 HID Report).

HID Driver Header Protocol Packet(s)

New TID Payload Reserved Data Padding Data

0 1 2 3 … 2+payload … 63

Several Protocol Packets fit in HID Report

In this example 2 packets fit exactly in 1 HID report (payload is set to 61). If the sum of the 2

packets is smaller, padding bytes are added after the second packet.

HID Driver Header Protocol Packet(s)

New TID Payload Reserved 1
st
 Packet Data 2

nd
 Packet Data

0 1 2 3 … n … 63

2.2 Protocol from Device to Host

2.2.1 Protocol Summary

The following table describes the byte-stream of the protocol from device to host.

Table 2.2: Protocol Summary Device to Host

Byte Content Description

0 TID Transaction ID, generated from the received report and the
internal TID

1 Payload Number of valid bytes in the current HID report (max. 64 bytes)

2 HID status HID Report Status Byte

3 Protocol Protocol Byte defining the Command for this protocol response
packet

4 Reserved Reserved Byte

5 Protocol Status Status Byte for this protocol response packet

6 tx-prot MSB MSB for number of bytes to transmit to the host in this protocol
response packet

7 tx-prot LSB LSB for number of bytes to transmit to the host in this protocol
response packet

8 Data Protocol Data to be send to the Host

8+tx-prot Protocol B Protocol Byte defining the Command for the second protocol
packet B

… … …

ST25RU3993 USB Protocol Documentation for PC Applications www.silicontrol.com

 page 8/26

Note:

 If a protocol was not processed (because e.g. the protocol id was unknown) the next HID

packet that is sent back will contain a HID status byte unequal 0 indicating that an error

occurred.

 The protocol status byte contains the information whether the command was successful or not

successful executed.

 There is also a flag indicating if the command shall produce always a response. This is the

AMS_COM_WRITE_READ_NOT flag. If this flag is set the firmware always produces a

response packet (even if there is no data to be sent to the host). This response packet contains

at least the status of the protocol.

2.2.2 Byte Stream Assembly

The generation of the byte stream in the firmware application is done in three steps.

Step1: Data Packet

The firmware application provides a single data packet containing the result.

Protocol Data

Data

0 1 … tx-size - 1

Step2: Process Received Packets

The function processReceivedPackets in the file stream_dispatcher.c adds the protocol header.

This header contains the protocol byte, the reserved and the status byte as well as the tx-prot 16-bit

word (from the information provided by the firmware application).

Protocol Header Protocol Data

Protocol ID Reserved Status Tx-Prot Data

0 1 2 3 4 5 … 4+tx-size

Step3: HID Driver

The HID driver on the firmware side splits the buffer into packets with a maximum size of 64 bytes

and adds for each HID Report a HID driver header. This is done in the following way.

Data buffer fits in one HID Report:

The report will be filled with padding up to 64 bytes if necessary.

HID Driver Header Protocol Packet(s)

TID Payload Status Data Padding Data

0 1 2 3 … 2+payload … 63

Protocol Packet(s) need more than one HID-report

The payload of all HID-reports except the last report is 61(64 Bytes – 3Header Bytes).

As many reports as needed for transmitting the packet(s) are generated.

ST25RU3993 USB Protocol Documentation for PC Applications www.silicontrol.com

 page 9/26

First HID Report (payload is set to 61):

HID Driver Header Protocol Packet(s)

TID Payload Status Data

0 1 2 3 … 63

The next HID Reports (payload is still set to 61):

HID Driver Header Protocol Packet(s)

New TID Payload Status Data

0 1 2 3 … 63

The last Report looks similar to the case where the packet fitted into 1 HID Report.

HID Driver Header Protocol Packet(s)

TID Payload Status Data Padding Data

0 1 2 3 … 2+payload … 63

Several Protocol Packets fit in HID Report

In this example 2 packets fit exactly in 1 HID report (payload is set to 61). If the sum of the 2

packets is smaller, padding bytes are added after the second packet.

HID Driver Header Protocol Packet(s)

New TID Payload Reserved 1
st
 Packet Data 2

nd
 Packet Data

0 1 2 3 … n … 63

2.3 Predefined Protocol IDs

The currently predefined commands shown in the following table can also be found in

ams_stream.h.

Table 2.3: Protocol IDs

Value Define

0x80 flag: AMS_COM_WRITE_READ_NOT

0x60 Protocol: AMS_COM_CONFIG

0x61 Protocol: AMS_COM_I2C

0x62 Protocol: AMS_COM_I2C_CONFIG

0x63 Protocol: AMS_COM_SPI

0x64 Protocol: AMS_COM_SPI_CONFIG

0x65 Protocol: AMS_COM_CTRL_CMD_RESET

0x66 Protocol: AMS_COM_CTRL_CMD_FW_INFORMATION

0x67 Protocol: AMS_COM_CTRL_CMD_FW_NUMBER

0x68 Protocol: AMS_COM_WRITE_REG

0x69 Protocol: AMS_COM_READ_REG

0x6B Protocol: AMS_COM_CTRL_CMD_ENTER_BOOTLOADER

0x7F Protocol: AMS_COM_FLUSH

Note:

 The following number range is special:

0x60 - 0x7F: reserved for generic commands (part of the ams common firmware)

0x60: is a configuration protocol for the firmware itself

0x6B: is reserved for the Bootloader

ST25RU3993 USB Protocol Documentation for PC Applications www.silicontrol.com

 page 10/26

0x7F: is reserved for the flush

An application can use the numbers: 0x00 - 0x5F for its own commands.

 Protocol-Rules:

The MSB of the protocol byte defines whether a response must be sent or not sent from the

firmware. This is useful for write commands to which you want in some cases a status

response.

 The Enter Bootloader become 0xEB because:

AMS_COM_WRITE_READ_NOT | AMS_COM_CTRL_CMD_ENTER_BOOTLOADER ==

0x80 | 0x6B = 0xEB

 Communication Error Responses:

For the communication error handling communication responses listed in the following table are

implemented.

Table 2.4: Communication Error Responses

Value Define

0x00 AMS_STREAM_NO_ERROR

0x01 AMS_STREAM_UNHANDLED_PROTOCOL

0x02 AMS_STREAM_PROTOCOL_FAILED

ST25RU3993 USB Protocol Documentation for PC Applications www.silicontrol.com

 page 11/26

3 Implementation for PC Host

The StreamV2 communication on the PC-side is part of the ams Communication Project. This

chapter gives an overview of the ams Communication project, the StreamV2 communication

classes and the necessary steps to set up a StreamV2 communication. The implementation is done

in C++.

3.1 The ams Communication Project

The ams Communication project contains all ams classes for communication between a PC host

and external devices with certain interfaces. Implementations for USB and an implementation for

Uart exist at the moment. All communication classes are derived from AMSCommunication class.

AMSCommunication is an abstract class used for abstraction of different communication interfaces

between the PC and the ams demo boards.

Figure 3.1: Class Diagram of AMSCommunication Classes

3.2 Communication Classes

This section lists the driver classes, the stream communication classes and the Communication

object classes.

Figure 3.2: Class Diagram of Driver Classes

ST25RU3993 USB Protocol Documentation for PC Applications www.silicontrol.com

 page 12/26

AmsComDriver This is the base class of all stream communication drivers.

HidComDriver

This is the communication class for HID streaming communication. The

HidComDriver is a derived class from AmsComDriver.

UartComDriver Communication class for UART streaming communication.

Figure 3.3: Class Diagram of Stream Communication Classes

AmsComStream

This class provides a communication stream that can transmit and

receive objects that are derived from class AmsComObject. The

communication stream itself takes an instance of class AmsComDriver

for the transport of the AmsComObjects.

AmsComStreamWrapper The Stream Wrapper is a derived class of AMSCommunication, so that it

fulfills the interface needed by the current version of the register map.

The AmsComStreamWrapper class contains as member an instance of

class AmsComStream. It uses this instance for communication.

Figure 3.4: Class Diagram of Communication Object Classes

AmsComObject Base class of all classes that implement objects that can be transmitted

and received using the AmsComStream class.

I2cRegisterObject The class to read and write registers using I2C.

I2CBlockObject Class to read or write a block of registers from a device using I2C.

I2CConfigObject Configuration object used for I2C.

SpiRegisterObject Class to read and write registers using SPI.

ST25RU3993 USB Protocol Documentation for PC Applications www.silicontrol.com

 page 13/26

SpiConfigObject Configuration object used for SPI.

ResetObject Class to reset MCU or peripherals.

EnterBootloaderObject The class to enter the Bootloader code at the MCU.

FirmwareNumberObject The class to read out the firmware version number.

GetFirmwareInfoObject The class to read out the firmware description string.

AmsFlushObject The AmsFlushObject is used to trigger a flush in the AmsComStream

class.

AmsConfigObject Reserved for future use.

3.3 Set up a Communication

This section describes the necessary steps to set up a communication. An example is given in

chapter 5.

 Set up the Streaming Communication

The VID (Vendor ID) and the PID (Product ID) of the device must be declared at first. In Windows it

can be found in Devices and Printers of the Control Panel. The property “Hardware IDs” shows the

VID and the PID of the corresponding device. The ams VID is 0x1325 and already defined in

HidComDriver.h.

The AMSDeviceDetector is used in the GUI, to recognize that the right USB device is connected or

disconnected. The device must be registered with the function “registerForHIDDevice”.

The HidComDriver class provides the communication channel for the stream communication. The

VID and PID must be assigned to the driver.

The AmsComStream class provides the functionality for streaming data packets. For this purpose it

uses an instance of class AmsComDriver (e.g. the HidComDriver).

The AmsComStreamWrapper combines the functionality of the HidComDriver and the

AmsComStream classes and fulfills the AMSCommunication class interface.

 Creation of AmsComObjects

Several predefined objects like the EnterBootloaderObject can be used. If no existing object fulfills

the required criteria’s, a new object has to be created. This new object must be derived from

AmsComObject. Every new object needs its own unique protocol ID.

For a new object it is necessary to implement the functions “serialise”, “rxSerialise” and

“deserialise”. These functions take care of reading out the data from the object and filling a protocol

buffer which is passed to the function as parameter (or vice versa). The function “serialise” fills the

buffer with the outgoing data. The function “deserialise” interprets the incoming buffer data. The

function “rxSerialise” fills the buffer with the outgoing data necessary to receive data from the device

(e.g. to read a register via I2C it is necessary to write an I2C command before reading back the

value).

 Communication using AmsComObjects

ST25RU3993 USB Protocol Documentation for PC Applications www.silicontrol.com

 page 14/26

To transmit an object, use either the function named “tx” or the operator “<<”. To receive an object,

use either the function named “rx” or the operator “>>”. The default stream does an automatic flush

of every object. The flush triggers an immediate transmission of the current data.

To improve the data throughput “late flush” can be used. In this case AMS_FLUSH has to be called

explicitly. When using the “late flush” several small packets can be packed into 1 HID report, or 1

Uart packet.

AMS_FLUSH is the shortcut to instantiate “late flush”.

ST25RU3993 USB Protocol Documentation for PC Applications www.silicontrol.com

 page 15/26

4 Implementation for Microchip Device Firmware

Application boards of ams frequently use a microcontroller of Microchip. MPLAB is an IDE for

firmware development, provided by Microchip. The StreamV2 implementation on the firmware side

is done with the programming language C.

4.1 USB and Stream Modules

Microchip provides modules for USB communication. Modules which must be included in ams

firmware projects are usb.h, usb_ch9.h, usb_function_generic.h, usb_common.h, usb_config.h,

usb_device.h, usb_function_hid.h, usb_hal.h, usb_hal_pic24.h. All these files can be found in the

directory: common/firmware/microchip/include or in common/include.

The following additional modules from ams are available to support the access to USB.

Table 4.1: USB Stream Modules of ams

Modules Description

ams_stream.h Contains the constants which are shared between GUI and
firmware concerning the ams streaming communication.

stream_dispatcher.h Interface for stream packet handling.

stream_driver.h Streaming driver interface declarations. The defines allow
switching between different stream drivers. USB and UART are
currently implemented.

usb_hid_stream_driver.h USB HID streaming driver declarations.

weak_stream_functions.h A weak implementation of the functions needed by the
stream_dispatcher.c file. If you provide your own implementation
yours will supersede the weak functions.

4.2 Streaming Implementation

In ams firmware programs the function ProcessIO (stream_dispatcher.c) is called to accomplish

USB communication. This function must be called cyclically in a running program. The sequence of

ProcessIO is illustrated in the following flow chart.

In the first step, the function checks if the microcontroller is ready for USB communication. If not,

the function will return immediately.

When an USB HID report is received the function processReceivedPackets is called. This function

does the de-/fragmentation into protocol packets. A single protocol packet is executed based on

the protocol byte. E.g. for an “I2C Command” the function handleI2c is called, for a “Read Register

Command” the function applReadReg is called, and so on. Each function takes care of packet data

interpretation according to its own protocol structure. Self-defined protocol commands (the protocol

byte is within the range 0x00 - 0x5F) will automatically call the function applProcessCmd. This

function has to be implemented by the user.

After processReceivedPackets was executed, the StreamTransmit function is executed to transmit

data from firmware to PC.

ST25RU3993 USB Protocol Documentation for PC Applications www.silicontrol.com

 page 16/26

For applications that have data to send without receiving packets the function ProcessCyclic exists.

This function is called periodically and checks if any data has to be sent. This is done by calling the

function: applProcessCyclic. This function must be implemented by yourself if you need to transmit

data without receiving first data. E.g. you want to send heartbeat information every other second.

Data is again sent by using the StreamTransmit function.

Figure 4.1: Flow Chart Process IO

4.3 Implementation of Application Commands in firmware

 Register the Device for USB recognition

The PID and VID of the application have to be defined in the Device Descriptor Constants

(usb_descriptors.c).

 Application Commands

The predefined commands listed in chapter 2.3 (or ams_stream.h) are already implemented. The

calling of your own protocol commands has to be done in the function applProcessCmd or

applProcessCyclic.

 Incoming and Outgoing Data

ST25RU3993 USB Protocol Documentation for PC Applications www.silicontrol.com

 page 17/26

Access to incoming data is done by using the parameter rxData and access to outgoing data is

done by using the parameter txData. The parameter rxSize holds the size of the incoming data, and

txSize is set to the size of the outgoing buffer and must be set by the application to the size of the

data to be transmitted.

ST25RU3993 USB Protocol Documentation for PC Applications www.silicontrol.com

 page 18/26

5 Example

This example will show how to setup a StreamV2 communication in the GUI and in the Microchip

firmware. Additionally, the implementation of the protocol command “readRegister” for a certain

device will be explained. Subchapter 5.1 shows the byte stream handed to the low-level USB driver

for this command. Subchapter 5.2 describes the GUI implementation and subchapter 5.3 the

firmware implementation for the StreamV2 communication.

5.1 Byte Stream

The Microchip HID-protocol of a “Read Register Command” is described. All data are given in HEX

encoding.

HID Protocol Transmitted from PC to Device: 05 06 00 02 00 01 00 01 03

HID Driver Header: 05 06 00

05 TID

06 Payload; the Protocol Packet contains 6 Bytes including the protocol header

00 Reserved

Protocol Header: 02 00 01 00 01

Protocol Data: 03

02 Protocol Id for Read Register

00 MSB tx-prot = Send Data Size MSB

01 LSB tx-prot = Send Data Size LSB (1 Byte for transmitting the Register Address)

00 MSB rx-prot = Read Data Size MSB

01 LSB rx-prot = Read Data Size LSB (1 Byte for receiving the Register Value)

03 Data itself = Register address 03

HID Protocol Transmitted from Device to PC: 53 06 00 02 00 00 00 01 5a

HID Driver Header:

53 TID

06 Payload

00 HID Status (AMS_STREAM_NO_ERROR)

Protocol Header: 02 00 00 00 01

Protocol Data: 5a

ST25RU3993 USB Protocol Documentation for PC Applications www.silicontrol.com

 page 19/26

02 Protocol Id for Read Register

00 Reserved

00 Status (no error)

00 tx-prot MSB

01 tx-prot LSB

5a Data itself = Value of Register 03 is 5a

5.2 GUI Implementation

This example shows how to create a HID streaming communication. Also a register read command

will be implemented. For this, a communication class which is derived from the

AmsComStreamWrapper will be generated.

 Registration of the ams Application

The PID of the application has to be defined

#define AMS_EXAMPLE_PID 0xD003

An instance of AMSDeviceDetector is declared in MainWindow.hxx as private member.

private:
 AMSDeviceDetector itsDeviceDetector;

The HID device must be registered.

itsDeviceDetector.registerForHIDDevice(AMS_VID, AMS_EXAMPLE_PID);

 Implementation of the Communication Class

The communication class is derived from AmsComStreamWrapper. The class contains the three

functions getFirmwareNumber, writeRegister and readRegister.

class MyCommunication : public AmsComStreamWrapper
{
 Q_OBJECT

public:
 MyCommunication ();
 ~MyCommunication () { };

 QString getFirmwareNumber ();

 void writeRegister (unsigned int regAddress, unsigned int regValue);
 int readRegister (unsigned int regAddress);
};

MyCommunication::MyCommunication (): AmsComStreamWrapper (AMS_EXAMPLE_PID, AMS_VID) {
}

ST25RU3993 USB Protocol Documentation for PC Applications www.silicontrol.com

 page 20/26

The communication class can now be used in MainWindow. The communication is declared as

private member in MainWindow.hxx.

private:
 MyCommunication *itsCom;

The communication is generated in MainWindow.cpp.

 itsCom = new MyCommunication();

The communication must be connected before using it.

 itsCom->connect();

 Implementation of getFirmwareNumber

The implementation of the method getFirmwareNumber uses the object FirmwareNumberObject.

QString MyCommunication::getFirmwareNumber ()
{
 QString fwNum = "err 43.43.43";
 FirmwareNumberObject fno;

 itsStream >> fno;
 AmsFirmwareCheck::convert(fno.get(), fwNum);

 return fwNum;
}

With this implementation the communication can be verified easily. The firmware number should be

read correctly.

 Implementation of the direct command “readRegister”

A new class for a read register object will be implemented.

#define COM_ID_READ_REG 0x02 /* !< My own command to read a register. */

class ReadRegisterObj : public AmsComObject
{
public:
 ReadRegisterObj (unsigned int theRegAdress) :
 AmsComObject (COM_ID_READ_REG, 1, 1, 1), itsRegAddress(theRegAdress) { };
 ReadRegisterObj (const ReadRegisterObj & other) : AmsComObject(other) { };
 ~ReadRegisterObj () { };

 bool serialise(unsigned char *buffer, int bufferSize, QXmlStreamWriter *xml);
 bool rxSerialise(unsigned char *buffer, int bufferSize, QXmlStreamWriter *xml);
 bool deserialise (unsigned char *buffer, int bufferSize, QXmlStreamWriter *xml);
 bool fill(QXmlStreamReader *xml) {return false;};
 unsigned int get();

private:
 unsigned int itsRegAddress;
 unsigned int itsRegValue;

};

ST25RU3993 USB Protocol Documentation for PC Applications www.silicontrol.com

 page 21/26

The functions serialise, rxSerialise, deserialise to read-out and filling the buffer must be

implemented.

bool ReadRegisterObj::serialise (unsigned char *buffer, int bufferSize, QXmlStreamWriter
*xml)
{
 if (bufferSize > 0)
 {
 buffer[0] = static_cast< unsigned char > (0xFF & itsRegAddress);
 return true;
 }
 return false;
}

bool ReadRegisterObj::rxSerialise (unsigned char *buffer, int bufferSize,
QXmlStreamWriter *xml)
{
 return serialise(buffer, bufferSize, xml);
}

bool ReadRegisterObj::deserialise (unsigned char *buffer, int bufferSize,
QXmlStreamWriter *xml)
{
 if (bufferSize > 0)
 {
 itsRegValue = buffer[0];
 return true;
 }
 return false;
}

unsigned int ReadRegisterObj::get ()
{
 return itsRegValue;
}

The read register object can now be used. The flush-operator executes the “flush”.

int MyCommunication::readRegister (unsigned int regAddress)
{
 unsigned int regValue;
 int streamError;

 ReadRegisterObj rrObj;
 stream() >> rrObj;

 regValue = rrObj.get();
 streamError = stream.lastError(); /* check if comm. is okay */
 if (streamError != 0)
 {
 /* some error occurred – do your error handling */
 }
 return regValue;
}

ST25RU3993 USB Protocol Documentation for PC Applications www.silicontrol.com

 page 22/26

5.3 Firmware Implementation

In usb_descriptors.c Device Descriptor Constants define the PID and VID of the application.

 0x1325, // Vendor ID: ams AG

 0xD003, // Product ID

The calling of the implementation for the protocol command “readRegister” has to be done in the

function applProcessCmd.

Note it can also be implemented in this function. However if you have several commands to

implement it is better to implement them in separate functions or files and just call them in this

function.

Note: the types u8, u16, etc. are defined in the file: ams_types.h.

u8 applProcessCmd(u8 protocol, u16 rxSize, const u8 * rxData, u16 * txSize, u8 * txData

)

{

 u8 ret = AMS_STREAM_NO_ERROR;

 txSize = 0; / for most cases we do not want to send back some data */

 switch(protocol)

 {

 case COM_ID_WRITE_REG: // write register

 {

 asxxxxWrite(rxData[0], rxData[1]);

 break;

 }

 case COM_ID_READ_REG 0x02: // read register

 {

 u8 registerValue;

 asxxxxRead(rxData[0], ®isterValue);

 txData[0] = registerValue;

 txSize = 1; / 1 byte to be sent back ->

 protocol header is added by caller of this function */

 break;

 }

 default:

 ret = AMS_STREAM_UNHANDLED_PROTOCOL;

 break;

 }

 return ret;

}

ST25RU3993 USB Protocol Documentation for PC Applications www.silicontrol.com

 page 23/26

6 Additional Information

6.1 Recording USB Stream Data

Using the Stream V2 communication gives the possibility for recording the data transferred over

USB. The recorded data is stored in xml-Files. This functionality is available in the existing

communication objects like for e.g. the I2cComObject. For new protocol command objects the

implementation has to be done in the functions “fill”, “serialise”, “rxSerialise” and “deserialise”.

To have the communication recorded you have to add the following instruction in your main window:

 MyMainWindow::MyMainWindow : AMSMainWindow(), …

{

 /* some code here to set up your communication etc. */

 AMSTrace::getInstace()->init(1); /* initialize to trace to file:

 C:\Users\<username>\AppData\Roaming\ams\<applicationName>\trace.txt */

}

 A fragment of recorded data is shown by the following example.

<?xml version="1.0" encoding="UTF-8"?>

<session>

 <information guiversion="1.4.4.0" fwversion=""/>

<telegram pid="65" direction="write" trace="1">

 <reset>

 <objects>2</objects>

 </reset>

</telegram>

<telegram pid="7f" direction="write" trace="80000000"/>

<telegram pid="65" direction="write" trace="1">

 <reset>

 <objects>2</objects>

 </reset>

</telegram>

<telegram pid="7f" direction="write" trace="80000000"/>

ST25RU3993 USB Protocol Documentation for PC Applications www.silicontrol.com

 page 24/26

6.2 XML Stream Player

Recorded data of USB stream communication as described in the previous chapter 6.1 can be

played by the GUI with the class AmsComXmlPlayer. The implementation of AmsComXmlPlayer

and AmsComXmlReader classes is done in the AmsCom.h and AmsCom.cpp files. A possible way

to use the player is shown in the following example.

 QFile readIn("C:\\temp\\trace.txt");
 if (readIn.open(QIODevice::ReadOnly))
 {
 QXmlStreamReader reader(&readIn);
 itsStream.setPolicy(AmsComStream::theLateFlushPolicy);
 itsStream.open();
 AmsComXmlPlayer player(&reader, &itsStream);
 while (player.playNext()) ; /* play all commands from the XML file */
 itsStream.close();
 readIn.close();
 }

6.3 Compatibility to old Format

The StreamV2 firmware checks the format of the received USB command in the function

usbStreamReceive. The function usbStreamOldFormatRequest handles commands in the old

stream format.

The firmware response to an old format request is:

Byte Content

0 0xDE = AMS_STREAM_COMPATIBILITY_TID

1 0x03= Payload in the old format

2 Protocol ID in the old format

3 0xFF = Status = failed , wrong protocol Version

4 0x00 = data length = No data

ST25RU3993 USB Protocol Documentation for PC Applications www.silicontrol.com

 page 25/26

References

Nr. Reference Description

1 USB Protocol Documentation 1v0 Description for the USB Communication
with Stream V1

2 Ams_stream.h Contains a description and constants for
AMS Streaming Communication

3 www.usb.org Universal Serial Bus Homepage

4 www.microchip.com Microchip Homepage

5 C- Streaming Modules C Source Code of the Microchip Firmware

6 AMS Communication class C++ Source Code of the AMS
Communication Project

7 de.wikipedia.org Wikipedia

ST25RU3993 USB Protocol Documentation for PC Applications www.silicontrol.com

 page 26/26

Contact Information

WuXi Silicontrol Electronic Technology Co., Ltd.

WEB:
http://www.silicontrol.com
http://flagship.eleckits.com

E-Mail:support@eleckits.com

TEL:86-0510-83488567

Skype:eleckits2011

ST25RU3993 USB Protocol Documentation for PC Applications www.silicontrol.com

